[go: up one dir, main page]

login
A038542
Primes p such that Ramanujan function tau(p) is divisible by 11.
2
19, 29, 199, 337, 421, 433, 443, 463, 569, 577, 593, 607, 641, 757, 809, 821, 887, 1021, 1049, 1063, 1289, 1439, 1471, 1499, 1607, 1621, 1637, 1901, 1987, 1993, 2221, 2417, 2473, 2539, 2621, 2699, 2803, 2917, 3121, 3319, 3343, 3361, 3433
OFFSET
1,1
REFERENCES
Robert A. Rankin, Ramanujan's tau-function and its generalizations, in: G. E. Andrews et al. (eds.), Ramanujan Revisited, Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987, Academic Press, 1988, pp. 245-268.
LINKS
MATHEMATICA
Select[Range[3500], PrimeQ[#] && Divisible[RamanujanTau[#], 11] &] (* Amiram Eldar, Mar 28 2021 *)
PROG
(PARI) lista (nn) = {forprime(p=1, nn, if (taup(p) % 11 == 0, print1(p, ", ")); ); } \\ (with taup(p) defined in A076847) Michel Marcus, Jun 26 2013
(Perl) use ntheory ":all"; forprimes { say unless ramanujan_tau($_) % 11; } 1e4; # Dana Jacobsen, Sep 05 2015
CROSSREFS
Sequence in context: A089724 A265804 A276732 * A269262 A166659 A298763
KEYWORD
nonn
AUTHOR
Paolo Dominici (pl.dm(AT)libero.it)
STATUS
approved