[go: up one dir, main page]

login
A298268
a(1) = 1, and for any n > 1, if n is the k-th number with greatest prime factor p, then a(n) is the k-th number with least prime factor p.
2
1, 2, 3, 4, 5, 9, 7, 6, 15, 25, 11, 21, 13, 49, 35, 8, 17, 27, 19, 55, 77, 121, 23, 33, 65, 169, 39, 91, 29, 85, 31, 10, 143, 289, 119, 45, 37, 361, 221, 95, 41, 133, 43, 187, 115, 529, 47, 51, 161, 125, 323, 247, 53, 57, 209, 203, 437, 841, 59, 145, 61, 961
OFFSET
1,2
COMMENTS
This sequence is a permutation of the natural numbers, with inverse A298882.
For any prime p and k > 0:
- if s_p(k) is the k-th p-smooth number and r_p(k) is the k-th p-rough number,
- then a(p * s_p(k)) = p * r_p(k),
- for example: a(11 * A051038(k)) = 11 * A008364(k).
LINKS
Rémy Sigrist, Colored logarithmic scatterplot of the first 100000 terms (with prime and semiprime values highlighted)
Rémy Sigrist, Colored logarithmic scatterplot of the first 100000 terms (where the color is function of A006530(n))
Rémy Sigrist, Colored logarithmic scatterplot of the first 100000 terms (where the color is function of A176506(k) when a(n) is the k-th semiprime)
FORMULA
a(1) = 1.
a(A125624(n, k)) = A083140(n, k) for any n > 0 and k > 0.
a(n) = A083140(A061395(n), A078899(n)) for any n > 1.
Empirically:
- a(n) = n iff n belongs to A046022,
- a(2^k) = 2 * k for any k > 0,
- a(2 * p) = p^2 for any prime p,
- a(3 * p) = p * A151800(p) for any odd prime p.
EXAMPLE
The first terms, alongside A006530(n), are:
n a(n) gpf(n)
-- ---- ------
1 1 1
2 2 2
3 3 3
4 4 2
5 5 5
6 9 3
7 7 7
8 6 2
9 15 3
10 25 5
11 11 11
12 21 3
13 13 13
14 49 7
15 35 5
16 8 2
17 17 17
18 27 3
19 19 19
20 55 5
PROG
(PARI) See Links section.
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Jan 27 2018
STATUS
approved