[go: up one dir, main page]

login
A297998
Solution of the complementary equation a(n) = a(1)*b(n-1) - a(0)*b(n-2) + floor(5*n/2), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.
2
1, 2, 10, 13, 17, 20, 24, 27, 33, 35, 41, 43, 47, 52, 55, 60, 63, 66, 72, 74, 80, 82, 86, 89, 93, 98, 103, 105, 109, 112, 116, 121, 126, 128, 132, 137, 140, 143, 147, 152, 155, 160, 163, 166, 170, 175, 178, 183, 186, 191, 194, 197, 201, 204, 210, 214, 217
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values.
LINKS
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that a(2) = 10.
Complement: (b(n)) = (3,4,5,6,7,8,9,11,12,14,15,16,18,19,21,...)
MATHEMATICA
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
a[n_] := a[n] = a[1]*b[n - 1] - a[0]*b[n - 2] + Floor[5/2];
j = 1; While[j < 100, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; k
Table[a[n], {n, 0, k}] (* A297998 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 04 2018
STATUS
approved