[go: up one dir, main page]

login
A294893
Number of divisors d of n such that Stern polynomial B(d,x) is irreducible.
6
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 2, 3, 2, 2, 2, 1, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 3, 1, 2, 1, 2, 3, 2, 3, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 3, 3, 2, 2, 2, 3, 2, 1, 2, 2, 3, 1, 3, 1, 2, 3
OFFSET
1,6
COMMENTS
Number of terms > 1 of A186891 that divide n.
LINKS
FORMULA
a(n) = Sum_{d|n} A283991(d).
a(n) + A294894(n) = A000005(n).
a(n) = A294891(n) + A283991(n).
EXAMPLE
For n=25, with divisors [1, 5, 25], both B(5,x) and B(25,x) are irreducible, thus a(25)=2.
PROG
(PARI)
ps(n) = if(n<2, n, if(n%2, ps(n\2)+ps(n\2+1), 'x*ps(n\2)));
A283991(n) = polisirreducible(ps(n));
A294893(n) = sumdiv(n, d, A283991(d));
CROSSREFS
Cf. also A294883.
Differs from A001221 for the first time at n=25.
Sequence in context: A354870 A050320 A333175 * A336570 A121382 A305150
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 10 2017
STATUS
approved