[go: up one dir, main page]

login
A292637
Rank of (3+r)*n when all the numbers (3-r)*j and (3+r)*k, where r = sqrt(2), j>=1, k>=1, are jointly ranked.
2
3, 7, 11, 15, 18, 22, 26, 30, 34, 37, 41, 45, 49, 52, 56, 60, 64, 68, 71, 75, 79, 83, 87, 90, 94, 98, 102, 105, 109, 113, 117, 121, 124, 128, 132, 136, 139, 143, 147, 151, 155, 158, 162, 166, 170, 174, 177, 181, 185, 189, 192, 196, 200, 204, 208, 211, 215
OFFSET
1,1
LINKS
MATHEMATICA
z = 120; r = 3 - Sqrt[2]; s = 3 + Sqrt[2];
Table[n + Floor[n*r/s], {n, 1, z}] (* A292636 *)
Table[n + Floor[n*s/r], {n, 1, z}] (* A292637 *)
PROG
(PARI) vector(100, n, n + floor(n*(3+sqrt(2))/(3-sqrt(2)))) \\ G. C. Greubel, Aug 20 2018
(Magma) [n + Floor(n*(3+Sqrt(2))/(3-Sqrt(2))): n in [1..100]]; // G. C. Greubel, Aug 20 2018
CROSSREFS
Cf. A292636 (complement).
Sequence in context: A079710 A373415 A145832 * A279608 A322408 A124981
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 23 2017
STATUS
approved