[go: up one dir, main page]

login
A292371
A binary encoding of 1-digits in the base-4 representation of n.
7
0, 1, 0, 0, 2, 3, 2, 2, 0, 1, 0, 0, 0, 1, 0, 0, 4, 5, 4, 4, 6, 7, 6, 6, 4, 5, 4, 4, 4, 5, 4, 4, 0, 1, 0, 0, 2, 3, 2, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 3, 2, 2, 0, 1, 0, 0, 0, 1, 0, 0, 8, 9, 8, 8, 10, 11, 10, 10, 8, 9, 8, 8, 8, 9, 8, 8, 12, 13, 12, 12, 14, 15, 14, 14, 12, 13, 12, 12, 12, 13, 12, 12, 8, 9, 8, 8, 10, 11, 10, 10, 8, 9, 8, 8, 8, 9, 8, 8, 8
OFFSET
0,5
LINKS
Rémy Sigrist, Interactive scatterplot of (a(n), A292372(n), A292373(n)) for n=0..4^8-1 [provided your web browser supports the Plotly library, you should see icons on the top right corner of the page: if you choose "Orbital rotation", then you will be able to rotate the plot alongside three axes, the 3D plot here corresponds to a Sierpiński triangle-based pyramid]
FORMULA
a(n) = A059905(A292272(n)) = A059905(n AND A003188(n)), where AND is bitwise-AND (A004198).
For all n >= 0, A000120(a(n)) = A160381(n).
EXAMPLE
n a(n) base-4(n) binary(a(n))
A007090(n) A007088(a(n))
-- ---- ---------- ------------
1 1 1 1
2 0 2 0
3 0 3 0
4 2 10 10
5 3 11 11
6 2 12 10
7 2 13 10
8 0 20 0
9 1 21 1
10 0 22 0
11 0 23 0
12 0 30 0
13 1 31 1
14 0 32 0
15 0 33 0
16 4 100 100
17 5 101 101
18 4 102 100
MATHEMATICA
Table[FromDigits[IntegerDigits[n, 4] /. k_ /; IntegerQ@ k :> If[k == 1, 1, 0], 2], {n, 0, 112}] (* Michael De Vlieger, Sep 21 2017 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A292371 n) (if (zero? n) n (let ((d (modulo n 4))) (+ (if (= 1 d) 1 0) (* 2 (A292371 (/ (- n d) 4)))))))
(Python)
from sympy.ntheory.factor_ import digits
def a(n):
k=digits(n, 4)[1:]
return 0 if n==0 else int("".join('1' if i==1 else '0' for i in k), 2)
print([a(n) for n in range(116)]) # Indranil Ghosh, Sep 21 2017
(Python)
def A292371(n): return int(bin(n&~(n>>1))[:1:-2][::-1], 2) # Chai Wah Wu, Jun 30 2022
CROSSREFS
Cf. A289813 (analogous sequence for base 3).
Sequence in context: A086764 A375089 A255010 * A216683 A367896 A368123
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Sep 15 2017
STATUS
approved