[go: up one dir, main page]

login
A292299
Sum of values of vertices of type E at level n of the hyperbolic Pascal pyramid.
1
0, 0, 0, 0, 18, 312, 3798, 41544, 438270, 4566120, 47368110, 490668936, 5080145070, 52588590888, 544355820750, 5634640292424, 58323941179182, 603707608725096, 6248936971173390, 64682313170747016, 669522088312069614, 6930176023749038760, 71733763792342350798
OFFSET
0,5
LINKS
László Németh, Hyperbolic Pascal pyramid, arXiv:1511.0267 [math.CO], 2015 (5th line of Table 2).
FORMULA
a(n) = 18*a(n-1) - 99*a(n-2) + 226*a(n-3) - 224*a(n-4) + 92*a(n-5) - 12*a(n-6), n >= 7.
G.f.: 6*x^4*(3 - 2*x - 6*x^2) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)). - Colin Barker, Sep 17 2017
MATHEMATICA
CoefficientList[Series[6*x^4*(3 - 2*x - 6*x^2)/((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)
PROG
(PARI) concat(vector(4), Vec(6*x^4*(3 - 2*x - 6*x^2) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)) + O(x^30))) \\ Colin Barker, Sep 17 2017
CROSSREFS
Cf. A264237.
Sequence in context: A368537 A321511 A208537 * A158532 A214995 A171323
KEYWORD
nonn,easy
AUTHOR
Eric M. Schmidt, Sep 14 2017
STATUS
approved