[go: up one dir, main page]

login
A292297
Sum of values of vertices of type C at level n of the hyperbolic Pascal pyramid.
1
0, 0, 0, 6, 36, 210, 1452, 12138, 114684, 1147002, 11729148, 120902202, 1249686492, 12929303130, 133809210108, 1384977143610, 14335551770268, 148385432561562, 1535924231893308, 15898233466089210, 164561459781232092, 1703363953470584922, 17631399812695032444
OFFSET
0,4
LINKS
László Németh, Hyperbolic Pascal pyramid, arXiv:1511.0267 [math.CO], 2015 (3rd line of Table 2).
FORMULA
a(n) = 18*a(n-1) - 99*a(n-2) + 226*a(n-3) - 224*a(n-4) + 92*a(n-5) - 12*a(n-6), n >= 7.
G.f.: 6*x^3*(1 - 12*x + 26*x^2 - 20*x^3) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)). - Colin Barker, Sep 17 2017
MATHEMATICA
CoefficientList[Series[6*x^3*(1 - 12*x + 26*x^2 - 20*x^3)/((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)
PROG
(PARI) concat(vector(3), Vec(6*x^3*(1 - 12*x + 26*x^2 - 20*x^3) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)) + O(x^30))) \\ Colin Barker, Sep 17 2017
CROSSREFS
Cf. A264237.
Sequence in context: A358539 A105492 A052748 * A353344 A353118 A357027
KEYWORD
nonn,easy
AUTHOR
Eric M. Schmidt, Sep 14 2017
STATUS
approved