[go: up one dir, main page]

login
A291233
p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S - S^2 - S^3.
2
1, 2, 5, 11, 26, 58, 134, 303, 693, 1576, 3593, 8184, 18645, 42480, 96773, 220481, 502290, 1144350, 2607062, 5939501, 13531493, 30827806, 70232669, 160005808, 364529269, 830479602, 1892019493, 4310445875, 9820165646, 22372546322, 50969693930, 116120429167
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.
FORMULA
G.f.: (-1 - x + x^2 + x^3 - x^4)/(-1 + x + 4 x^2 - x^3 - 4 x^4 + x^5 + x^6).
a(n) = a(n-1) + 4*a(n-2) - a(n-3) - 4*a(n-4) + a(n-5) + a(n-6) for n >= 7.
MATHEMATICA
z = 60; s = x/(1 - x^2); p = 1 - s - s^2 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291233 *)
CROSSREFS
Sequence in context: A218575 A159929 A362740 * A026787 A064416 A006138
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 26 2017
STATUS
approved