[go: up one dir, main page]

login
A289067
Recurrence a(n+2) = Sum_{k=0..n} binomial(n,k)*a(k)*a(n+1-k) with a(0)=3, a(1)=-1.
15
3, -1, -3, -8, -15, 14, 357, 2302, 7725, -23626, -655383, -6082538, -26422935, 192117134, 5645490477, 65726212222, 317363920005, -4755023055706, -146987610294063, -1994869987891418, -9440043721651455, 280432883707929854, 9053536431109958997, 136677605454588278542
OFFSET
0,1
COMMENTS
One of a family of integer sequences whose e.g.f.s satisfy the differential equation f''(z) = f'(z)f(z). For more details, see A289064.
LINKS
S. Sykora, Sequences related to the differential equation f'' = af'f, Stan's Library, Vol. VI, Jun 2017.
FORMULA
E.g.f.: -sqrt(11)*tanh(z*sqrt(11)/2 - arccosh(sqrt(11/2))).
E.g.f. for the sequence (-1)^(n+1)*a(n): -sqrt(11)*tanh(z*sqrt(11)/2 + arccosh(sqrt(11/2))).
MATHEMATICA
a[n_] := a[n] = Sum[Binomial[n-2, k]*a[k]*a[n-k-1], {k, 0, n-2}]; a[0] = 3; a[1] = -1; Array[a, 24, 0] (* Jean-François Alcover, Jul 20 2017 *)
PROG
(PARI) c0=3; c1=-1; nmax = 200; a=vector(nmax+1); a[1]=c0; a[2]=c1; for(m=0, #a-3, a[m+3]=sum(k=0, m, binomial(m, k)*a[k+1]*a[m+2-k])); a
CROSSREFS
Sequences for other starting pairs: A000111 (1,1), A289064 (1,-1), A289065 (2,-1), A289066 (3,1), A289068 (1,-2), A289069 (3,-2), A289070 (0,3).
Sequence in context: A068958 A238106 A087000 * A010282 A119265 A143453
KEYWORD
sign
AUTHOR
Stanislav Sykora, Jun 23 2017
STATUS
approved