[go: up one dir, main page]

login
A289065
Recurrence a(n+2) = Sum_{k=0..n} binomial(n,k)*a(k)*a(n+1-k) with a(0)=2, a(1)=-1.
15
2, -1, -2, -3, 0, 24, 108, 162, -1440, -14256, -54432, 177552, 4432320, 31796064, 10520928, -2531636208, -31078494720, -119133110016, 2180339762688, 46923057637632, 368154762301440, -2077357560938496, -101408182152625152, -1314869775259580928, -1225663306833715200
OFFSET
0,1
COMMENTS
One of a family of integer sequences whose e.g.f.s satisfy the differential equation f''(z) = f'(z)f(z). For more details, see A289064.
LINKS
S. Sykora, Sequences related to the differential equation f'' = af'f, Stan's Library, Vol. VI, Jun 2017.
FORMULA
E.g.f.: -sqrt(6)*tanh(z*sqrt(6)/2 - arccosh(sqrt(3))).
E.g.f. for the sequence (-1)^(n+1)*a(n): -sqrt(6)*tanh(z*sqrt(6)/2 + arccosh(sqrt(3))).
MATHEMATICA
a[n_] := a[n] = Sum[Binomial[n-2, k]*a[k]*a[n-k-1], {k, 0, n-2}]; a[0] = 2; a[1] = -1; Array[a, 25, 0] (* Jean-François Alcover, Jul 20 2017 *)
PROG
(PARI) c0=2; c1=-1; nmax = 200; a=vector(nmax+1); a[1]=c0; a[2]=c1; for(m=0, #a-3, a[m+3]=sum(k=0, m, binomial(m, k)*a[k+1]*a[m+2-k])); a
CROSSREFS
Sequences for other starting pairs: A000111 (1,1), A289064 (1,-1), A289066 (3,1), A289067 (3,-1), A289068 (1,-2), A289069 (3,-2), A289070 (0,3).
Sequence in context: A249857 A317441 A249777 * A132815 A167684 A094646
KEYWORD
sign
AUTHOR
Stanislav Sykora, Jun 23 2017
STATUS
approved