[go: up one dir, main page]

login
A288133
Positions of 0 in A288132; complement of A288134.
5
1, 2, 4, 7, 12, 21, 38, 71, 136, 265, 522, 1035, 2060, 4109, 8206, 16399, 32784, 65553, 131090, 262163, 524308, 1048597, 2097174, 4194327, 8388632, 16777241, 33554458, 67108891, 134217756, 268435485
OFFSET
1,2
COMMENTS
a(n+1)/a(n) -> 2. It appears that a(n) = A005126(n-2) for n >= 2.
This conjecture by Kimberling is proved in A288132. - Michel Dekking, Feb 18 2021
FORMULA
Conjectures from Colin Barker, Jun 09 2017: (Start)
G.f.: x*(1 - 2*x + x^2 - x^3) / ((1 - x)^2*(1 - 2*x)).
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) for n>4.
(End)
Colin Barker's conjectures are a consequence of
a(n) = 2^{n-2} + n - 1 = A005126(n-2) for n >= 2. - Michel Dekking, Feb 18 2021
MATHEMATICA
s = {0, 0}; w[0] = StringJoin[Map[ToString, s]];
w[n_] := StringReplace[w[n - 1], {"00" -> "0010", "1" -> "11"}]
Table[w[n], {n, 0, 8}]
st = ToCharacterCode[w[11]] - 48 (* A288132 *)
Flatten[Position[st, 0]] (* A288133 *)
Flatten[Position[st, 1]] (* A288134 *)
CROSSREFS
Sequence in context: A054161 A023433 A190168 * A005126 A054151 A018176
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 07 2017
STATUS
approved