[go: up one dir, main page]

login
A286950
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - x^j)/(1 - x^(k*j))^k.
4
1, 1, -1, 1, 0, -1, 1, -1, 0, 0, 1, -1, 1, 0, 0, 1, -1, -1, -2, 0, 1, 1, -1, -1, 3, 3, 0, 0, 1, -1, -1, 0, -3, -4, 0, 1, 1, -1, -1, 0, 4, -2, 5, 0, 0, 1, -1, -1, 0, 0, -3, 9, -7, 0, 0, 1, -1, -1, 0, 0, 6, -4, -8, 10, 0, 0, 1, -1, -1, 0, 0, 1, -5, 1, -6, -13, 0, 0, 1
OFFSET
0,19
LINKS
FORMULA
G.f. of column k: Product_{j>=1} (1 - x^j)/(1 - x^(k*j))^k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
-1, 0, -1, -1, -1, ...
-1, 0, 1, -1, -1, ...
0, 0, -2, 3, 0, ...
0, 0, 3, -3, 4, ...
CROSSREFS
Columns k=0-4 give: A010815, A000007, A106507, A286952, A286953.
Diagonal gives A286956.
Cf. A175595.
Sequence in context: A219055 A025902 A219923 * A210638 A272903 A321458
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, May 17 2017
STATUS
approved