OFFSET
1,1
COMMENTS
Conjectures: a(n) - a(n-1) is in {2,4} for n >= 2, and a(n)/n -> sqrt(8).
From Michel Dekking, Dec 06 2018: (Start)
Proof of the conjectures and the formula in FORMULA:
let (b(n)):= A286907, the [0->00,1->01]-transform of (s(n)):= A080764, the Sturmian word with slope alpha = sqrt(2)/2.
Then, clearly, (watch out for the incompatible offsets) b(2n-1) = 0 for all n>=1, and b(2n) = s(n-1) for all n>=1. The positions of 1 in (s(n-1)) are given by the Beatty sequence (floor(n*beta)), with beta = 1/alpha = sqrt(2) (see "Automatic Sequences").
The conclusion is that a(n) = 2*floor(n*beta) = 2*A001951(n+1). Also,
a(n) - a(n-1) = 2*(floor(n*beta) - floor((n-1)*beta))
is in {2,4}, because (floor(n*beta) - floor((n-1)*beta)) is a Sturmian sequence.
Finally,
a(n)/n = 2*floor(n*beta)/n -> 2*beta = sqrt(8) as n->oo.
(End)
REFERENCES
J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 284.
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = 2*A001951(n) for n >= 1, conjectured.
EXAMPLE
As a word, A286907 = 0101000101000101..., in which 1 is in positions 2,4,8,10,14,16,....
MATHEMATICA
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 18 2017
EXTENSIONS
Edited by Clark Kimberling, Nov 06 2018
STATUS
approved