[go: up one dir, main page]

login
A286781
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
18
1, 2, 1, 10, 9, 1, 74, 91, 23, 1, 706, 1063, 416, 46, 1, 8162, 14193, 7344, 1350, 80, 1, 110410, 213953, 134613, 34362, 3550, 127, 1, 1708394, 3602891, 2620379, 842751, 125195, 8085, 189, 1, 29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1, 576037442, 1375636129, 1223392968, 533394516, 124266346, 15653598, 1023340, 31356, 366, 1
OFFSET
0,2
COMMENTS
T(n,k) is the number of Feynman's diagrams with k fermionic loops in the order n of the perturbative expansion in dimension zero for the self-energy function in a many-body theory of fermions with two-body interaction (see Molinari link).
LINKS
Gheorghe Coserea, Rows n=0..122, flattened
Luca G. Molinari, Hedin's equations and enumeration of Feynman's diagrams, arXiv:cond-mat/0401500 [cond-mat.str-el], 2005.
FORMULA
y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies y * (1-x*y)^2 = (1 + x*y + 2*x^2*deriv(y,x)) * (1 - x*y*(1-t)), with y(0;t) = 1, where P_n(t) = Sum_{k=0..n} T(n,k)*t^k, 0<=n, 0<=k<=n.
A000698(n+1)=T(n,0), A101986(n)=T(n,n-1), A000108(n)=P_n(-1), A286794(n)=P_n(1).
EXAMPLE
A(x;t) = 1 + (2 + t)*x + (10 + 9*t + t^2)*x^2 + (74 + 91*t + 23*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8]
[0] 1;
[1] 2, 1;
[2] 10, 9, 1;
[3] 74, 91, 23, 1;
[4] 706, 1063, 416, 46, 1;
[5] 8162, 14193, 7344, 1350, 80, 1;
[6] 110410, 213953, 134613, 34362, 3550, 127, 1;
[7] 1708394, 3602891, 2620379, 842751, 125195, 8085, 189, 1;
[8] 29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1;
[9] ...
MATHEMATICA
max = 10; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*y0[x, t] + 2*x^2*D[y0[x, t], x])*(1 - x*y0[x, t]*(1 - t))/(1 - x*y0[x, t])^2 + O[x]^n // Normal; y0[x_, t_] = y1[x, t]];
row[n_] := CoefficientList[Coefficient[y0[x, t], x, n], t];
Table[row[n], {n, 0, max-1}] // Flatten (* Jean-François Alcover, May 19 2017, adapted from PARI *)
PROG
(PARI)
A286781_ser(N, t='t) = {
my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1);
while(n++,
y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2;
if (y1 == y0, break()); y0 = y1; );
y0;
};
concat(apply(p->Vecrev(p), Vec(A286781_ser(10))))
\\ test: y = A286781_ser(50); y*(1-x*y)^2 == (1 + x*y + 2*x^2*deriv(y, 'x)) * (1 - x*y*(1-t))
CROSSREFS
For vertex and polarization functions see A286782 and A286783. For GWA of the self-energy and polarization functions see A286784 and A286785.
Columns k=0-8 give: A000698(k=0), A286786(k=1), A286787(k=2), A286788(k=3), A286789(k=4), A286790(k=5), A286791(k=6), A286792(k=7), A286793(k=8).
Sequence in context: A217108 A127259 A152260 * A193727 A138098 A081098
KEYWORD
nonn,tabl
AUTHOR
Gheorghe Coserea, May 14 2017
STATUS
approved