[go: up one dir, main page]

login
A286149
Compound filter: a(n) = T(A046523(n), A109395(n)), where T(n,k) is sequence A000027 used as a pairing function.
3
1, 5, 8, 14, 17, 34, 30, 44, 19, 51, 68, 103, 93, 72, 196, 152, 155, 103, 192, 132, 72, 126, 278, 349, 32, 159, 53, 165, 437, 976, 498, 560, 709, 237, 786, 739, 705, 282, 159, 402, 863, 660, 948, 243, 337, 384, 1130, 1273, 49, 132, 1546, 288, 1433, 349, 126, 459, 282, 567, 1772, 2761, 1893, 636, 165, 2144, 2421, 1921, 2280, 390, 2707, 2046, 2558, 2773, 2703
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A046523(n)+A109395(n))^2) - A046523(n) - 3*A109395(n)).
MATHEMATICA
Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {Times @@ MapIndexed[ Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]] - Boole[n == 1], Denominator[EulerPhi[n]/n]}, {n, 73}] (* Michael De Vlieger, May 04 2017 *)
PROG
(PARI)
A109395(n) = n/gcd(n, eulerphi(n));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
A286149(n) = (1/2)*(2 + ((A046523(n)+A109395(n))^2) - A046523(n) - 3*A109395(n));
for(n=1, 10000, write("b286149.txt", n, " ", A286149(n)));
(Scheme) (define (A286149 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A109395 n)) 2) (- (A046523 n)) (- (* 3 (A109395 n))) 2)))
(Python)
from sympy import factorint, totient, gcd
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def a(n): return T(a046523(n), n/gcd(n, totient(n))) # Indranil Ghosh, May 05 2017
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 04 2017
STATUS
approved