[go: up one dir, main page]

login
A284692
The number of partitions of n which represent Chomp positions with Sprague-Grundy value 5.
2
0, 0, 0, 0, 0, 4, 2, 2, 5, 10, 4, 2, 9, 6, 2, 4, 18, 21, 8, 44, 26, 67, 54, 83, 96, 142, 152, 172, 248, 244, 312, 389, 512, 584, 683, 724, 945, 1106, 1266, 1512, 1798, 1974, 2435, 2852, 3295, 3981, 4349, 5441, 6283, 6983, 8249, 9786, 10979, 13135, 14938
OFFSET
1,6
COMMENTS
Chomp positions with Sprague-Grundy value 0 are the losing positions. Their number is given in A112470.
REFERENCES
P. M. Grundy, Mathematics and games, Eureka 2 (1939), 6-8; reprinted (1964), Eureka 27, 9-11.
LINKS
Thomas S. Ferguson, Game Theory (lecture notes + exercise questions for a course on Combinatorial Game Theory).
P. M. Grundy, Mathematics and games, Eureka (The Archimedeans' Journal), No. 2, 1939, pp. 6-8. [Annotated scanned copy. My former colleague and coauthor Florence Jessie MacWilliams (nee Collinson), who was a student at Cambridge University in 1939, gave me this journal. - N. J. A. Sloane, Nov 17 2018]
R. Sprague, Über mathematische Kampfspiele, Tohoku Math. J. 41 (1936), 438-444.
R. Sprague, Über zwei Abarten von Nim, Tohoku Math. J. 43 (1937), 351-354.
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas J Wolf, Apr 01 2017
STATUS
approved