[go: up one dir, main page]

login
A284690
The number of partitions of n which represent Chomp positions with Sprague-Grundy value 4.
2
0, 0, 0, 0, 2, 4, 2, 2, 2, 0, 7, 4, 0, 14, 7, 18, 4, 28, 16, 30, 44, 65, 50, 83, 100, 174, 168, 211, 256, 283, 318, 450, 456, 628, 690, 872, 986, 1164, 1361, 1633, 1832, 2118, 2701, 2950, 3540, 3966, 4775, 5280, 6346, 7150, 8686, 9516, 11096, 13140, 15274
OFFSET
1,5
COMMENTS
Chomp positions with Sprague-Grundy value 0 are the losing positions. Their number is given in A112470.
REFERENCES
P. M. Grundy, Mathematics and games, Eureka 2 (1939), 6-8; reprinted (1964), Eureka 27, 9-11.
LINKS
Thomas S. Ferguson, Game Theory (lecture notes + exercise questions for a course on Combinatorial Game Theory).
P. M. Grundy, Mathematics and games, Eureka (The Archimedeans' Journal), No. 2, 1939, pp. 6-8. [Annotated scanned copy. My former colleague and coauthor Florence Jessie MacWilliams (nee Collinson), who was a student at Cambridge University in 1939, gave me this journal. - N. J. A. Sloane, Nov 17 2018]
R. Sprague, Über mathematische Kampfspiele, Tohoku Math. J. 41 (1936), 438-444.
R. Sprague, Über zwei Abarten von Nim, Tohoku Math. J. 43 (1937), 351-354.
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas J Wolf, Apr 01 2017
STATUS
approved