[go: up one dir, main page]

login
A284547
Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 998", based on the 5-celled von Neumann neighborhood.
4
1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2987, 5973, 11435, 24405, 48555, 97621, 196267, 392533, 785323, 1571413, 3141547, 6291029, 12581803, 25164629, 50331307, 100662613, 201325483, 402651733, 805302187, 1610612309, 3221224363, 6442449749, 12884901547
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Differs from A001045(n+2) from a(11) = 2987 on. - M. F. Hasler, Feb 13 2020
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Chai Wah Wu, May 06 2024: (Start)
a(n) = 2*a(n-1) + a(n-8) - 2*a(n-9) for n > 25.
G.f.: (1024*x^25 + 512*x^24 + 6400*x^22 - 768*x^21 + 768*x^20 + 1024*x^17 + 512*x^16 - 256*x^15 + 1536*x^14 - 512*x^13 + 256*x^11 - 2*x^8 + x^7 - x^6 + x^5 - x^4 + x^3 - x^2 + x + 1)/(2*x^9 - x^8 - 2*x + 1). (End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 998; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i , 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 28 2017
STATUS
approved