[go: up one dir, main page]

login
A282347
Square array read by antidiagonals downwards (see Comments for definition).
2
1, 2, 2, 3, 3, 4, 4, 4, 2, 7, 5, 5, 5, 4, 10, 6, 6, 6, 6, 7, 13, 7, 7, 7, 2, 9, 10, 16, 8, 8, 8, 8, 4, 12, 13, 19, 9, 9, 9, 9, 8, 7, 15, 16, 22, 10, 10, 10, 10, 6, 11, 10, 18, 19, 25, 11, 11, 11, 11, 11, 9, 14, 13, 21, 22, 28, 12, 12, 12, 12, 12, 6, 12, 17
OFFSET
1,2
COMMENTS
Define f(x(1),x(2),...,x(2k)) = (a(2k),x(1),x(2k-1),x(2),a(2k-1),a(3),...a(k-1)). The array is defined by rows as follows. row 1 = (1,2,3,4,5,...) = A000027. To get from (row n) = (r(1),r(2),r(3),...) to (row n+1), the first 2n-2 terms are f(r(1),r(2),...,r(n-1),r(n+1),...,r(2n-1)), where r(n) is skipped, followed by (r(2n),r(2n+1),...) = (3n-1, 3n, 3n+1,...).
EXAMPLE
The corner of the square array begins:
1 2 3 4 5 6 7 8 9 10 11 12 13
2 3 4 5 6 7 8 9 10 11 12 13 14
4 2 5 6 7 8 9 10 11 12 13 14 15
7 4 6 2 8 9 10 11 12 13 14 15 16
10 7 9 4 8 6 11 12 13 14 15 16 17
13 10 12 7 11 9 6 4 14 15 16 17 18
16 13 15 10 14 12 4 7 6 11 17 18 19
19 16 18 13 17 15 11 10 6 14 7 12 20
MATHEMATICA
f[seq_] := Riffle[Take[Reverse[seq], #], Take[seq, #]] &[Floor[Length[seq]/2]];
rows = 200; row[1] = Table[n, {n, rows}];
Table[row[n + 1] = Flatten[{f[Take[row[n], 2 n - 1]], Drop[row[n], 2 n - 1]}], {n, Floor[(rows - 1)/3 + 1]}];
TableForm[Table[Take[row[n], 20], {n, 1, 20}]] (* A282347, array *)
Table[row[n][[n]], {n, 2 + Floor[(rows - 1)/3]}] (* A282347, sequence *)
(* Peter J. C. Moses, Feb 12 2017 *)
CROSSREFS
Cf. A035486, A282348 (diagonal).
Sequence in context: A074719 A079730 A035486 * A172397 A237815 A238701
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Feb 13 2017
STATUS
approved