[go: up one dir, main page]

login
A280829
Number of partitions of n into two squarefree semiprimes.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 1, 2, 0, 0, 1, 3, 1, 0, 1, 2, 2, 1, 2, 3, 2, 0, 2, 4, 3, 1, 0, 3, 2, 2, 2, 3, 2, 0, 2, 4, 5, 0, 1, 2, 3, 2, 3, 5, 2, 2, 3, 7, 4, 1, 2, 3, 4, 2, 5, 4, 2, 0, 4, 6, 2, 2, 2, 4, 3, 4
OFFSET
1,20
FORMULA
a(n) = Sum_{i=2..floor(n/2)} A280710(i) * A280710(n-i).
EXAMPLE
a(20) = 2; there are 2 partitions of 20 into two squarefree semiprimes: (14,6) and (10,10).
MAPLE
with(numtheory): A280829:=n->add(floor(bigomega(i)*mobius(i)^2/2)*floor(2*mobius(i)^2/bigomega(i))*floor(bigomega(n-i)*mobius(i)^2/2)*floor(2*mobius(n-i)^2/bigomega(n-i)), i=2..floor(n/2)): seq(A280829(n), n=1..100);
MATHEMATICA
Table[Sum[Floor[PrimeOmega[i] MoebiusMu[i]^2 / 2] Floor[2 MoebiusMu[i]^2 / PrimeOmega[i]] Floor[PrimeOmega[n - i] MoebiusMu[i]^2 / 2] Floor[2 MoebiusMu[n - i]^2 / PrimeOmega[n - i]], {i, 2, Floor[n/2]}], {n, 1, 90}] (* Indranil Ghosh, Mar 10 2017, translated from Maple code *)
PROG
(PARI) for(n=1, 90, print1(sum(i=2, floor(n/2), floor(bigomega(i) * moebius(i)^2 / 2) * floor(2 * moebius(i)^2 / bigomega(i)) * floor(bigomega(n - i) * moebius(i)^2 / 2) * floor(2 * moebius(n - i)^2 / bigomega(n - i))), ", ")) \\ Indranil Ghosh, Mar 10 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Jan 08 2017
STATUS
approved