[go: up one dir, main page]

login
A279206
Length of first run of 0's in binary representation of Catalan(n).
2
0, 0, 1, 1, 1, 1, 4, 1, 1, 2, 5, 2, 2, 1, 1, 2, 4, 1, 3, 1, 4, 1, 1, 2, 2, 3, 4, 2, 1, 3, 1, 2, 3, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 3, 1, 1, 2, 8, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 6, 1, 3, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 3, 6, 1, 1, 1, 1, 1, 1
OFFSET
0,7
COMMENTS
What combinatorial problem is this the answer to?
LINKS
EXAMPLE
A000108(13) = 742900_10 = A264663(13) = 10110101010111110100_2, so a(13) = 1.
MAPLE
f:= proc(n) local L; uses ListTools;
L:= [1, op(convert(binomial(2*n, n)/(n+1), base, 2))];
L:= Reverse(L[2..-1]-L[1..-2]);
Search(-1, L) - Search(1, L);
end proc:
map(f, [$0..100]); # Robert Israel, Dec 22 2016
MATHEMATICA
Table[First[Map[Length, DeleteCases[Split@ IntegerDigits[CatalanNumber@ n, 2], w_ /; Times @@ w > 0]] /. {} -> {0}], {n, 0, 89}] (* Michael De Vlieger, Dec 22 2016 *)
CROSSREFS
KEYWORD
nonn,base,look
AUTHOR
N. J. A. Sloane, Dec 22 2016
STATUS
approved