[go: up one dir, main page]

login
A204456
Coefficient array of numerator polynomials of the o.g.f.s for the sequence of odd numbers not divisible by a given prime.
3
1, 1, 1, 4, 1, 1, 2, 4, 2, 1, 1, 2, 2, 4, 2, 2, 1, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
OFFSET
1,4
COMMENTS
The row length sequence of this array is p(m) = A000040(m) (the primes).
Row m, for m >= 1, lists the coefficients of the numerator polynomials N(p(m);x) = Sum_{k=0..p(m)-1} a(m,k)*x^k for the o.g.f. G(p(m);x) = x*N(p(m);x)/((1-x^(p(m)-1))*(1-x)) for the sequence a(p(m);n) of odd numbers not divisible by p(n). For m=1 one has a(2;n)=2*n-1, n >= 1, and for m > 1 one has a(p(m);n) = 2*n+1 + floor((n-(p(m)+1)/2)/(p(m)-1)), n >= 1, and a(p(m);0):=0. See A204454 for the m=5 sequence a(11;n), also for more details.
The rows of this array are symmetric. For m > 1 they are symmetric around the central 4.
The first (p(m)+1)/2 numbers of row number m, for m >= 2, are given by the first differences of the corresponding sequence {a(p(m);n)}, with a(p(m),0):=0. See a formula below. The proof is trivial for m=1, and clear for m >= 2 from a(p(m);n), for n=0,...,(p(m)+1)/2, which is {0,1,3,...,p-2,p+2}. - Wolfdieter Lang, Jan 26 2012
FORMULA
a(m,k) = [x^k]N(p(m);x), m>=1, k=0,...,p(m)-1, with the numerator polynomial N(p(m);x) for the o.g.f. G(p(m);x) of the sequence of odd numbers not divisible by the m-th prime p(m)=A000040(m). See the comment above.
Row m has the number pattern (exponents on a number indicate how many times this number appears consecutively):
m=1, p(1)=2: 1 1, and for m>=2:
m, p(m): 1 2^((p(m)-3)/2) 4 2^((p(m)-3)/2) 1.
a(m,k) = a(p(m);k+1) - a(p(m);k), m>=2, k=0,...,(p(m)-1)/2,
with the corresponding sequence {a(p(m);n)} of the odd numbers not divisible by p(m), with a(p(m);0):=0. For m=1: a(1,0) = a(2;1)-a(2;0). By symmetry around the center: a(m,(p(m)-1)/2+k) = a(m,(p(m)-1)/2-k), k=1,...,(p(m)-1)/2, m>=2. For m=1: a(1,1)=a(1,0). See a comment above. - Wolfdieter Lang, Jan 26 2012
EXAMPLE
The array starts
m,p\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
1,2: 1 1
2,3: 1 4 1
3,5: 1 2 4 2 1
4,7: 1 2 2 4 2 2 1
5,11: 1 2 2 2 2 4 2 2 2 2 1
6,13: 1 2 2 2 2 2 4 2 2 2 2 2 1
7,17: 1 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 1
...
N(p(4);x) = N(7;x) = 1 + 2*x + 2*x^2 + 4*x^3 + 2*x^4 + 2*x^5 + x^6 = (1+x^2)*(1+2*x+x^2+2*x^3+x^4).
G(p(4);x) = G(7;x) = x*N(7;x)/((1-x^6)*(1-x)), the o.g.f. of
A162699. Compare this with the o.g.f. given there by R. J. Mathar, where the numerator is factorized also.
First difference rule: m=4: {a(7;n)} starts {0,1,3,5,9,...},
the first differences are {1,2,2,4,...}, giving the first (7+1)/2=4 entries of row number m=4 of the array. The other entries follow by symmetry. - Wolfdieter Lang, Jan 26 2012
CROSSREFS
Cf. A000040, A005408 (p=2), A007310 (p=3), A045572 (p=5), A162699 (p=7), A204454 (p=11).
Sequence in context: A264534 A228489 A096103 * A143441 A279206 A333989
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Jan 24 2012
STATUS
approved