OFFSET
1,3
COMMENTS
a(n) is the number of unlabeled and unrooted distance-hereditary graphs on n vertices; the enumeration is obtained from the symbolic specification / generating functions through Maple's combstruct library--an arbitrary number of terms can be derived.
LINKS
H.-J. Bandelt and H. M. Mulder, Distance-hereditary graphs, Journal of Combinatorial Theory, Series B, 41 (2): 182-208, doi:10.1016/0095-8956(86)90043-2, MR 0859310 (1986).
C. Chauve, É. Fusy and J. Lumbroso, An Exact Enumeration of Distance-Hereditary Graphs, arXiv:1608.01464 [math.CO], Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium On Discrete Algorithms, ANALCO session. SIAM (2017).
E. Howorka, A characterization of distance-hereditary graphs, The Quarterly Journal of Mathematics. Oxford. Second Series, 28 (112): 417-420, doi:10.1093/qmath/28.4.417, MR 0485544 (1977).
A. Iriza, Enumeration and random generation of unlabeled classes of graphs: A practical study of cycle pointing and the dissymmetry theorem, arXiv:1511.06037 [cs.DM], Master's Thesis, Princeton University (2015).
Jessica Shi, Enumeration of unlabeled graph classes: A study of tree decompositions and related approaches, 2015.
Wikipedia, Distance-Hereditary Graph.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jérémie Lumbroso, Nov 02 2016
EXTENSIONS
Offset corrected by Falk Hüffner, Jun 27 2018
STATUS
approved