[go: up one dir, main page]

login
A277862
Number of connected, unlabeled, unrooted distance-hereditary graphs on n vertices.
5
1, 1, 2, 6, 18, 73, 308, 1484, 7492, 40010, 220676, 1253940, 7282316, 43096792, 259019070, 1577653196, 9720170360, 60492629435, 379820431422, 2403679290621, 15319255038074, 98255642978084, 633833391637128, 4110221883283079, 26781322507739916, 175268504233782739
OFFSET
1,3
COMMENTS
a(n) is the number of unlabeled and unrooted distance-hereditary graphs on n vertices; the enumeration is obtained from the symbolic specification / generating functions through Maple's combstruct library--an arbitrary number of terms can be derived.
LINKS
H.-J. Bandelt and H. M. Mulder, Distance-hereditary graphs, Journal of Combinatorial Theory, Series B, 41 (2): 182-208, doi:10.1016/0095-8956(86)90043-2, MR 0859310 (1986).
C. Chauve, É. Fusy and J. Lumbroso, An Exact Enumeration of Distance-Hereditary Graphs, arXiv:1608.01464 [math.CO], Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium On Discrete Algorithms, ANALCO session. SIAM (2017).
E. Howorka, A characterization of distance-hereditary graphs, The Quarterly Journal of Mathematics. Oxford. Second Series, 28 (112): 417-420, doi:10.1093/qmath/28.4.417, MR 0485544 (1977).
CROSSREFS
Cf. A280766.
Sequence in context: A194088 A022491 A004395 * A213427 A006388 A007116
KEYWORD
nonn,easy
AUTHOR
Jérémie Lumbroso, Nov 02 2016
EXTENSIONS
Offset corrected by Falk Hüffner, Jun 27 2018
STATUS
approved