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Abstract

In this paper, we study the enumeration of certain classes of graphs that can be fully charac-
terized by tree decompositions, these classes are particularly significant due to the algorithmic
improvements derived from tree decompositions on classically NP-complete problems on these
classes [12, 7, 17, 35]. Previously, Chauve et al. [6] and Iriza [26] constructed grammars from
the split decomposition trees of distance hereditary graphs and 3-leaf power graphs. We extend
upon these results to obtain an upper bound grammar for parity graphs. Also, Nakano et al. [25]
used the vertex incremental characterization of distance hereditary graphs to obtain upper bounds.
We constructively enumerate (6,2)-chordal bipartite graphs, (Cs, bull, gem, co-gem)-free graphs,
and parity graphs using their vertex incremental characterization and extend upon Nakano et al.’s
results to analytically obtain upper bounds of O (7”) and O(l l") for (6,2)-chordal bipartite graphs
and (Cs, bull, gem, co-gem)-free graphs respectively.

1. Introduction

1.1. Context

The technique of decomposing graphs into trees has been an object of significant interest due to
its applications on classical problems in graph theory. Indeed, many graph theoretic problems are
inherently difficult due to the lack of recursive structure in graphs, and recursion has historically
offered efficient solutions to challenging problems. In this sense, classifying graphs in terms of trees
is of particular interest, since it associates a recursive structure to these graphs.

There are multiple methods for decomposing graphs into trees, which we discuss in Appendix
C. For each method, certain graphs, known as totally decomposable graphs, can be fully described
by restrictions on the labels of the internal nodes in the corresponding trees. Subsequently, certain
classically NP-hard problems can be solved in polynomial time on the corresponding trees, leading
to efficient solutions on the graphs. For example, Rao [35] constructed polynomial time algorithms
for the clique problem, domination-type problems, and the chromatic number problem on parity
graphs, using split decomposition.

In this paper, we focus primarily on split decomposition, which was first introduced by Cun-
ningham [11]. Split decomposition is closely related to the concept of connected components,
and indeed split decomposition identifies and “splits” groups of vertices which are connected in
certain ways. Cunningham [11] originally created a polynomial time algorithm to compute the split
decomposition of a graph; Ma and Spinrad [29] improved upon this algorithm, and Dahlhaus [12]
derived a faster, linear time algorithm. This has led to various algorithmic improvements, including
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a linear time algorithm to recognize parity graphs [12] and a linear time algorithm to recognize
circle graphs [17]. Other notable applications of split decomposition include the proof of the perfect
graph theorem [7].

1.2. Our Work

Our main goal in this paper is to gain a better understanding of the totally decomposable graphs in
split decomposition by answering two fundamental questions of graph theory, namely counting the
number of graphs in a class and describing the structural properties of those graphs. We focus on
two main approaches, both of which utilize techniques from analytic combinatorics to fully describe
and enumerate certain classes of trees [16].

The first approach involves the work of Gioan and Paul [19], who developed the notion of
graph-labeled trees and the methodology for creating such trees from the split decomposition
operations introduced by Cunningham [11]. The resulting trees have internal nodes which are
labeled with certain types of graphs and leaves which represent the vertices of the original graphs.
In particular, Chauve et al. [6] and Iriza [26] used these results to obtain symbolic grammars and
upper bounds on distance hereditary graphs and 3-leaf power graphs. We extend upon their results
to obtain a symbolic upper bound grammar on parity graphs.

The second approach involves vertex incremental characterizations, which are the necessary
and sufficient conditions under which adding a vertex to a graph in a certain class would produce
another graph in that class. Gioan and Paul [19] first derived vertex incremental characterizations
for distance hereditary graphs and 3-leaf power graphs based on split decomposition, and Nakano et
al. [25] used these characterizations to derive upper bounds for distance hereditary graphs. Note
that the bounds from Chauve et al. [6] and Iriza [26] supersede these bounds. We extend upon
these results and use vertex incremental characterizations from de Montgolfier and Rao [13] and
from Cicerone and Di Stefano [8, 9] to constructively obtain enumerations for (6,2)-chordal graphs,
(Cs, bull, gem, co-gem)-free graphs, and parity graphs, and to analytically obtain upper bounds for
(6,2)-chordal graphs and (Cs, bull, gem, co-gem)-free graphs, of 0(7”) and O(l 1”) respectively.

1.3. Outline

In Section 2, we introduce preliminary notations and definitions. In particular, in Section 2.4, we
introduce some basic techniques from analytic combinatorics which we use throughout this paper.
Also, in Section 2.5, we discuss the dissymmetry theorem, which was first introduced by Otter
[33] and later popularized by Bergeron et al. [1], and which provides a method for enumerating
unrooted trees by considering their rooted counterparts. In Section 3, we discuss split decomposition
and derive upper bounds for parity graphs, extending upon the results of Chauve et al. [6] and
Iriza [26]. In Section 4, we discuss vertex incremental and constructively derive enumerations for
(6,2)-chordal bipartite graphs, (Cs, bull, gem, co-gem)-free graphs, and parity graphs. We also
derive upper bounds for (6,2)-chordal bipartite graphs and (Cs, bull, gem, co-gem)-free graphs,
extending upon results from Nakano et al. [25].



2. Preliminaries and Definitions

2.1. Graph elementary definitions

For the purposes of this paper, every graph G is simple, that is to say, undirected, unlabeled, without
self-loops, and without multiple edges. We denote its vertex set by V(G) and its edge set by E(G),
and for any vertices x,y € V(G), we denote an edge between x and y as (x,y) € E(G). Note that
since G is undirected, we have (x,y) = (y,x).

The vertices x and y are said to be adjacent if there exists an edge between them, namely
(x,y) € E(G). The vertex x is said to have degree k if there are exactly k vertices adjacent to x.

Moreover, for a set of vertices V C V(G), the neighborhood of V, denoted by N(V), is defined
to be the set of vertices in V(G) \ V that are adjacent to at least one vertex in V. For a single
vertex v € V(G), the neighborhood of V, denoted by N(v), is similarly defined as the set of vertices
adjacent to v.

For a set of vertices V C V(G), the closed neighborhood of V, denoted by N[V], is defined to
be N(V)UYV, and similarly, for a vertex v € V(G), the closed neighborhood of v, denoted by N|v],
is defined to be N(v) U {v}.

For a set of edges E C E(G), the edge-induced subgraph is the graph H with vertices V (H)
and edges E(H) = E such that for any vertices x,y € V(G), x,y € V(H) if and only if (x,y) € E.
Similarly, for a set of vertices V C V(G), the vertex-induced subgraph is the graph H with vertices
V(H) =V and edges E(H) such that for any edge (x,y) € E(G), (x,y) € E(H) if and only if x,y € V.
In both cases, H is also known simply as the induced subgraph, and we say E or V induce the
subgraph H of G.

2.2. Bipartite graphs

We also refer to a special class of graphs throughout this paper, namely bipartite graphs. We define
a bipartition of the vertices V(G) of a graph G to be a division of the vertices into two subsets, V|
and V,, such that V| and V; are disjoint and V; UV, = V(G).

A bipartite graph is a graph G in which there exists a bipartition of the vertices V| and V, such
that every edge connects a vertex in V| to a vertex in V; (that is to say, for any vertices x,y € V|, we
have x,y ¢ E(G), and for any vertices u,v € V5, we have u,v ¢ E(G)). A complete bipartite graph
is a bipartite graph in which given the bipartition mentioned previously, Vi and V,, every vertex in
V1 is connected to every vertex in V5. Figure 1 shows an example of a complete bipartite graph.

Figure 2. Bull graph. Figure 3. Gem graph.
Figure 1. Complete bipartite graph

with 5 vertices in V| and 3 vertices
in VZ.



2.3. Special classes of graphs

We now provide definitions for the main graph classes we consider throughout this paper.

Definition 2.1. A parity graph, also known as a parity perfect graph, is a graph in which for any
pair of vertices, all path lengths between them have the same parity.

Note that in this definition, it is irrelevant whether path length is defined as the number of
vertices or the number of edges on a path; for the sake of clarity, we define path length to refer to
the number of edges on a path.

Definition 2.2. A (6,2)-chordal bipartite graph is a graph which is (6,2)-chordal and bipartite. A
(6,2)-chordal graph is a graph in which every cycle of length at least 6 has at least 2 chords, which
are edges that are not part of the cycle but connect vertices in the cycle [3].

Definition 2.3. A (Cs, bull, gem, co-gem)-free graph is a graph which does not contain a cycle graph
of length 5, a bull graph, a gem graph, or the complement of a gem graph as induced subgraphs. A
cycle graph of length n is a graph that consists of a single cycle, with n vertices. A bull graph is the
graph shown in Figure 2. A gem graph is the graph shown in Figure 3.

2.4. Analytic combinatorics

We now introduce the analytic combinatorics necessary to enumerate the various classes of trees
considered throughout this paper. A combinatorial class A, also known simply as class, is a
countable set of objects with a size function |- | : A — Zx¢ such that for every size (every n in Z>),
there is a finite number of elements. For example, the set of binary trees with a size function that
gives the number of internal nodes in each binary tree is a class.

Given a class of objects A, we define an enumeration of A to be the sequence given by
a, =#{y € A| |y| = n} (in other words, the sequence {a, } in which a, is the number of objects
in A of size n). The corresponding formal power series A(z) = Y~ a,z" is called the ordinary
generating function (OGF) of A and is used when A is unlabeled.

The symbolic method, which is what we use in this paper, is based on the idea that there exist
symbolic operations that, when applied to combinatorial classes, translate directly to an OGF. We
begin with the base elements upon which these operations can be applied. These include the neutral
object, €, which has no size and in an OGF, translates to 7Y = 1, and the atomic object, Z, which

Name Symbol OGF
Neutral (element of size 0) & 1

Atom (element of size 1) Z Z

Disjoint Union A+B A(z) + B(z)
Product AxB A(z)-B(z)
Sequence SEQ(A) 1/(1—-A(z))
Set SET(A) exp(A(z))
Pointing A Z%A(Z)
Substitution AoB A(B(2))

Table 1. Unlabeled combinatorial classes, from Flajolet and Sedgewick [16].
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Figure 4. All binary trees of size 3 (with 3 internal nodes, in
purple). Figure 5. Randomly generated

binary tree.

has size 1 and in an OGF, translates to z! = z. A description of these base elements and some basic
symbolic operations are shown in Table 1. For certain classes of graphs, it is possible to express the
class entirely in terms of symbolic operations, these base elements, and itself (for recursion), and
we call these classes decomposable. We call the symbolic representation of such classes a grammar.

For example, let B be the class of binary trees where the size function gives the number of
internal nodes. All binary trees of size 3 are shown in Figure 4. Recursively, binary trees are either a
leaf (no size contribution) or an internal node (1 size contribution) with two binary subtrees. As
such, the grammar for this class is given by

B=¢+BXxZXxB.
This results in the functional equation
B(z) =1+ B(z) -z B(2),
and solving the quadratic, we receive

1—VAz—1

B(z) = 5

It is then possible to derive a formal power series for B(z) to receive the OGF. There are various
computer algebra systems that automate this process, that is, given a grammar, can evaluate and
return an OGF. For the purposes of this paper, we use Maple with the combstruct package to
evaluate symbolic grammars. In the case of B, this gives us

B(z) =z +222 +57 + 1474 + ...

Note that it is also possible to obtain a random sampler from a grammar, through the recursive
method or through Boltzmann samplers. The details of this is beyond the scope of this paper. We
provide an example of a randomly generated binary tree in Figure 5.

2.5. Dissymmetry theorem

Note that binary trees are rooted at a vertex, that is to say, they have a "distinguished" vertex
from which they can be recursively decomposed into smaller binary trees. In general, the above
techniques can easily enumerate such classes of trees, with a "distinguished" vertex, edge, or other
feature from which they can be either recursively decomposed into smaller trees of the same class
or decomposed into trees of other classes. Such classes of trees are known as rooted trees, and the
"distinguished" vertex, edge, or feature is known as the root.
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However, in subsequent sections, we focus on trees that do not have a root, known as unrooted
trees. This poses a nontrivial problem for unlabeled trees. We consider here one technique for
addressing this problem, namely the dissymmetry theorem, which relates an unrooted class of
trees to its rooted versions. The dissymmetry theorem was first developed by Otter [33] and later
popularized by Bergeron et al. [1].

Theorem 2.1 (Dissymmetry theorem). Let A be an unrooted class of trees, and let A®, A*®,
and A*7* be the corresponding classes of trees rooted at a vertex, an edge, and a directed edge
respectively. Then, there is a bijection

A+A.—>. :A. +A._.

in the sense that for a given n, there are the same number of objects of size n in both sets. In other
words,
apn=ay+a, *—ay*
Note that Chapuy et al. have previously used the dissymmetry theorem to characterize classes
of trees that are obtained from decomposing graphs [5]. Also, Chauve et al. [6] proved that it is
possible to consider only internal nodes when applying the dissymmetry theorem.

Lemma 2.2. The dissymmetry theorem remains true when the three rooted classes are restricted to
only contain those trees rooted at internal nodes or edges between two internal nodes.

We use this lemma in conjunction with symbolic grammars to enumerate parity graphs in
Section 3.2.

3. Enumerating graphs exactly using split decomposition

In this section, we derive upper bounds for parity graphs, extending upon the results of Chauve et
al. [6] and Iriza [26]. Specifically, Gioan and Paul [19] developed a method to represent graphs as
graph-labeled trees, using a technique called split decomposition. We apply this to parity graphs
and then enumerate the resulting graph-labeled trees using techniques introduced in Sections 2.4
and 2.5.

3.1. Split decomposition

Gioan and Paul [19] developed the notion of representing certain classes of graphs using graph-
labeled trees, based on tree decomposition techniques, including split decomposition. We begin by
reproducing their characterizations and results here.

We first introduce Gioan and Paul’s [19] notions of graph-labeled trees.

Definition 3.1. A graph-labeled tree (T,F) is a tree T in which every internal node u is labeled by
a graph G, € F such that there is a bijection p, from the tree edges of T incident to u to V(G,). We
call the vertices of G, marker-vertices.

Figure 6 depicts a graph-labeled tree 7" in which the leaves are denoted by small shaded circles,
the internal nodes are denoted by large circles, and the marker-vertices are denoted by small solid
circles. The bijection p, is denoted by the edges from the marker-vertices to the other nodes of



Figure 7. Accessibility graph for the
graph-labeled tree in Figure 6.

Figure 6. Example of a graph-labeled tree.

the tree. Note that the leaves are numbered for convenience in discussing them, and the tree 7 is
actually unlabeled.

In order to connect the concept of graph-labeled trees with graphs, we introduce Gioan and
Paul’s [19] notion of accessibility.

Definition 3.2. Let (7, F) be a graph-labeled tree and let u, v be leaves of 7. We say that u and v
are accessible if it 1s possible to draw a path from u to v by traversing no more than on edge in each
internal graph label. More formally, # and v are accessible if there exists a path from u to v such that
for any pair of tree edges e = (x,y) and ¢’ = (y,x") on the path, we have (py(e),p,(¢')) € E(Gy).

For example, in the graph-labeled tree T in Figure 6, leaf 2 and leaf 3 are accessible while leaf
3 and leaf 6 are not accessible.

Definition 3.3. The accessibility graph, also known as the original graph, of a graph-labeled tree
(T, F) is the graph G whose vertex set is the leaf set of T, and for x,y € V(G), we have (x,y) € E(G)
if and only if x and y are accessible in 7T'.

Figure 7 depicts the accessibility graph G corresponding to the graph-labeled tree 7 shown in
Figure 6, where the vertices of G are labeled to correspond with the leaves in 7.

In particular, given a connected graph G, Gioan and Paul [19] use split decomposition to
represent the graph as a graph-labeled tree 7" in which the accessibility graph of T is exactly G. The
following definitions regarding split decomposition were originally derived from Cunningham [11].

Definition 3.4. A split of a graph G is a bipartition (V;,V>) of V(G) such that

1. |Vi| >2and |V;2| > 2, and
2. the edges between V; and V; induce a complete bipartite graph.

Note that the second statement in the definition is equivalent to the statement, every vertex of
N(V}) is adjacent to every vertex of N(V3).

Definition 3.5. A graph is degenerate if every bipartition of its vertices into two sets of size > 2 is
a split, and a graph is prime if it has no split. The only degenerate graphs are known to be cliques
and stars.



center > ® extremities

Figure 8. Clique with 4 vertices. Figure 9. Star with 4 vertices.

A clique is a graph in which every pair of vertices is connected by an edge, and a star is a graph
with n vertices such that some vertex x € V(G) is adjacent to the other n — 1 vertices and there are
no other edges (more formally, for some x € V(G), we have E(G) = {(x,y) | y € V(G) \ {x}}). In
a star, we refer to the vertex x as its center and the other n — 1 vertices as its extremities. Figure 8
shows an example of a clique and Figure 9 shows an example of a star.

In a graph-labeled tree, an internal node labeled with a clique is called a clique node, an internal
node labeled with a star is called a star node, and an internal node labeled with a prime graph is
called a prime node. In general, if we have an internal node labeled with a graph of class .4, we call
the node a A node. Gioan and Paul [19] apply this concept of a split to create a graph-labeled tree in
the following manner. Given a connected graph G, we begin with a graph labeled tree (7', F) such
that T has exactly one internal node labeled with G, and as such, |V (G)| leaves connected to the
internal node. Necessarily, 7 = {G}. We then repeatedly apply the following node-split operation
until the internal nodes of T are labeled with graphs which are either degenerate or prime:

Definition 3.6. Given an internal node g of T with graph label G and a split (V},V») of G, we can
consider the complete bipartite graph H induced by the edges between V| and V. Let X denote the
set of all vertices x; of H such that x; € V; and let X; denote the set of all vertices x, of H such that
x> € V,. In the node-split operation, we replace g with two internal nodes, g; and g;, labeled with
G and G, respectively, where G| and G are the subgraphs of G induced by V; and V, respectively.
We add a vertex a; to G, and for each vertex x| € X, we add the edge (aj,x;) to G;. Similarly, we
add a vertex a, to G, and for each vertex x, € X, we add the edge (az,x;) to G;. Finally, we add
an edge to T connecting these two new internal nodes, between a; and a,.

An example of a node-split operation is shown in Figure 10. On the left is a graph-labeled tree
T before the split operation and on the right is the tree after the split operation, in which the internal
nodes are denoted by large circles, the leaves are denoted by small shaded circles (shaded red or

Figure 10. Example of a node-split operation on a graph-labeled tree.



Figure 11. Reduction of two adjacent clique nodes in a Figure 12. Reduction of two adjacent start nodes in a
split tree to a single clique (recreated from [26]). split tree to a single star (recreated from [26]).

green), and the marker-vertices are denoted by smaller circles (shaded black, gray, or white). Note
that the leaves are labeled for convenience, and are not actually labeled in T'. The leaves colored in
red represent the vertices of G associated with V] and the leaves colored in green similarly represent
V,>. The edges of H are colored blue, and the white marker-vertices represent X; while the gray
marker-vertices represent Xj.

Note that the node-split operation does not modify the accessibility graph of the graph-labeled
tree. Since the graph-labeled tree we started with had accessibility graph G, the resulting graph-
labeled tree after repeated applications of the node-split operations also has accessibility graph G.
Thus, we obtain from a graph G, a graph-labeled tree (7, F) such that the graph labels of T are all
either degenerate or prime.

Definition 3.7. A graph-labeled tree (7', F) is reduced if

1. every v € V(T) has degree > 3,

2. there does not exist (u,v) € E(T) such that their corresponding labels G, and G, are both
cliques, and

3. there does not exist e = (u,v) € E(T) such that their corresponding labels G, and G, are both
stars where p,(e) is the center of G, and p,(e) is an extremity of G,.

Every graph-labeled tree can be reduced, because any two adjacent clique nodes is the result
of a node-split operation on a single internal node labeled with a clique, and any two adjacent star
nodes (in the manner described) is the result of a node-split operation on a single internal node
labeled with a star (see Figures 11 and 12 respectively). The graph-labeled tree obtained earlier can
as such be reduced, and in fact Gioan and Paul [19] prove that such a graph-labeled tree is unique.

Theorem 3.1. For any connected graph G, there exists a unique reduced graph-labeled tree (T, F)
such that G is the accessibility graph of (T,F) and every node label G, € F is either prime or
degenerate. We call this graph-labeled tree the split tree of G, and denote it by ST (G).

Note that the graph-labeled tree in Figure 6 is actually the split tree of the accessibility graph in
Figure 7.

3.2. Results: Parity graphs

Of particular interest is the following characterization of parity graphs by certain conditions on their
split trees, proven by Cicerone and Di Stefano [9].

Theorem 3.2. A graph G is a parity graph if and only if its split tree has only clique and connected
bipartite nodes.



Note that a star graph is a bipartite graph, so it is redundant to include star nodes. Throughout
this paper, we use bipartite node interchangeably with connected bipartite node, for brevity. We
now note that in a reduced split tree for parity graphs, no two adjacent internal nodes can be bipartite
nodes. We prove this result below:

Theorem 3.3. In a graph-labeled tree (T, F), any two adjacent bipartite nodes can be reduced to
one bipartite node such that the accessibility graph is preserved.

Proof. Consider two adjacent bipartite nodes in (7, F), say a and b with edge e = (a,b), labeled
with bipartite graphs A and B respectively. We can consider a bipartition of A, say A| and A, such
that every edge in A connects a vertex in A to a vertex in A,. We consider a similar bipartition of B,
say By and B;.

Let x, = py(e) and x, = pp(e). Without loss of generality, let x, € A, and x;, € B,. Now, let
X, CAjsuchthat X, = {x| (x,x;) € E(A)}. Similarly, let X;, C B} such that X;, = {x | (x,x5) € E(B)}.
Note that X, is disjoint from A, and X}, is disjoint from B; by construction.

Remove the internal nodes a and b from 7 and replace them with an internal node ¢ with
graph label C, where C is the disjoint union of graphs A and B (so V(C) = V(A)UV(B) and
E(C) = E(A)UE(B)). Call this new graph-labeled tree (7', F’). In C, remove vertices x, and x;.
Also, connect every vertex in X, to every vertex in Xj, so X, UX, induces a complete bipartite
graph from C. Note that as such, A; UB; and A, U B is a bipartition of C such that every edge in C
connects a vertex in one set to a vertex in the other. Thus, C is a bipartite graph and c is a bipartite
node.

Moreover, note that by construction, V(A) and V(B) is a split, and we can apply the split
operation to ¢ in (7/, F") to receive the original graph-labeled tree (7, F). As such, since the node-
split operation preserves the accessibility graph, the accessibility graph of (7, F) and (T’, F") is the
same. Thus, we have reduced two adjacent bipartite nodes to one bipartite node while preserving
the accessibility graph. O

See Figure 13 for an example of this reduction.
Based on Theorem 2.1, Lemma 2.2, Theorem 3.2, and Theorem 3.3, we obtain the following

3

1

Figure 13. Reduction of two adjacent bipartite nodes in a split tree to a single bipartite node.
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upper bound grammar for connected parity graphs, PGc:

PGe+Ti-p =T+ Tp
Tk = SET>3(Z+P)
Tp <(Z2+K)oB
Tep=KxP
K =SET>,(Z+P)
P<(Z+K)oOB
P > SET—,(Z+K) ©u(B)
B=z+22+2+34 +52 + 1720 + 447" + ...

and the upper ground grammar for parity graphs in general, PG:

PG+Tep=Tc+Tp
Tk <SET(Z+4Z x 2+ SET>3(Z+P))
Tp <SET(Z4+Zx Z+(Z+K)oB)
Ti—p > SET(K x P)
K = SET>,(Z+P)
P<(Z+K)o0®B
P > SET—,(Z+K) © u(B)
B=z+22+2+34 +52°2 + 170 +447 + ..

Note that we introduce two non-canonical symbolic operations, U (.A) and SET—, (.A) ® B. For
11 (A), we define the corresponding OGF to be z~ ' A(z). For SET_,(A) ® B, if we let A,(z) be the
OGF of SET—, (A), we replace each term b,z" of the OGF of B with by, - A,(z). Also, note that we
substitute the lower bound for 7x_p on the left hand side of the isomorphism and the upper bound
for Tic and Tp on the right hand side of the isomorphism to receive an upper bound for PGe. The
following list explains the symbols for each class:

e 3: A connected bipartite graph; the generating function for connected bipartite graphs,
developed by Hanlon [21], is complex and difficult to express as a symbolic grammar.
As such, we use a partial generating function, generated by Sloane [37].

e /C: A clique node with one of its incident subtrees having been removed

e P: A bipartite node with one of its incident subtrees having been removed (no constraint
on which incident subtree is removed)

e Tx: A parity split tree rooted at a clique node
e Tp: A parity split tree rooted at a bipartite node

e Tx_p: A parity split tree rooted at an undirected edge connecting a clique node and a
bipartite node
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Proof. The mutually-recursive expressions for X and P encode the requirements that the connected
parity split tree must have all nodes of degree at least 3, no adjacent clique nodes, and no adjacent
bipartite nodes (by Theorem 3.3). By Theorem 2.1 and Lemma 2.2, we have

PGe+ Tk +Tpop +Tesp +Tpok =Tk +Tp + Tk + Tp—p + Ti—p-

Note that Tx_x, Tp—p, Tx—x, and Tp_p are all empty, since clique nodes cannot be adjacent in a
split tree and bipartite nodes cannot be adjacent in a split tree. Also, Tx_p =~ Tp_x =~ Tx_p, so it
follows that

PGe + Ti—p =~ T + Tp.

Using Maple with the combst ruct package, we receive the following enumeration:

Corollary 3.4. The first few terms of the upper bound OGF of the class of connected parity graphs
Is
PGe(z) <2422 +22° + 675 +212° +902° +4327" + .. ..

Note that in Section 4.2 we obtain an exact enumeration of connected parity graphs, specifically
PGe(z) =242 +22 + 62" + 182 +75:°+ 3187 + ..,
so the first few terms of the upper bound OGF of connected parity graphs appear to be correct.

Corollary 3.5. The first few terms of the upper bound OGF of the class of parity graphs is
PG(z) <2z+42% +62° + 14z 4382 +1972° 63977 + ...

Note that in Section 4.2 we obtain an exact enumeration of parity graphs, which matches the
enumeration generated by Hougardy [23], specifically

PG(z) = 2+222 +42° + 1174 + 3127 + 1162° + 4667 + . ..,

so the first few terms of the upper bound OGF of parity graphs appear to be correct.

In addition, Iriza [26] wrote a parsing module that translates a split tree string into the corre-
sponding 3-leaf power graph or distance-hereditary graph. We have extended his parsing module
to translate a parity split tree string into the corresponding parity graph. The code can be found in
Appendix B.

3.3. Next steps

The difficulty with the grammar presented in Section 3.2 is that because it uses a partial version of
the connected bipartite graph generating function, it cannot consider isomorphisms arising from the
structure of connected bipartite graphs, hence the reason why the grammar merely gives an upper
bound. As previously mentioned, Hanlon [21] has developed a generating function for connected
bipartite graphs, which could potentially be used to construct an exact grammar for parity graphs.
However, the generating function is highly complex and difficult to integrate with the grammar
developed in Section 3.2.

Also, Iriza [26] used the dissymmetry theorem to build a Boltzmann sampler for distance
hereditary graphs and 3-leaf power graphs. We may be able to extend this result to parity graphs as
well, and obtain a Boltzmann sampler for parity graphs.
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4. Enumerating graphs constructively using vertex incremental

In this section, we constructively derive enumerations for (6,2)-chordal bipartite graphs,(Cs, bull,
gem, co-gem)-free graphs, and parity graphs, using a technique known as veretex incremental and
based on results from Cicerone and Di Stefano [9] and de Montgolfier and Rao [13]. We also derive
upper bounds for (6,2)-chordal bipartite graphs and (Cs, bull, gem, co-gem)-free graphs using
analytic combinatorics, based on results from Nakano et al. [25].

4.1. Vertex incremental

We begin by reviewing some concepts and notation presented in Section 2. Considering a graph G
and its vertex set V(G), for a set of vertices V C V(G), the neighborhood of V, denoted by N(V), is
defined to be the set of vertices V(G) \ V that are adjacent to at least one vertex in V. For a vertex
v € V(G), the neighborhood of v, denoted by N(v), is defined similarly to be the set of vertices
V(G)\ {v} that are adjacent to v. Also, for a set of vertices V C V(G), the closed neighborhood
of V, denoted by N[V], is defined to be N(V) UV, and similarly, for a vertex v € V(G), the closed
neighborhood of v, denoted by N|v], is defined to be N(v) U {v}.

We now consider vertex incremental characterizations. A vertex incremental characterization of
a class of graphs A is the necessary and sufficient conditions under which adding a vertex v to a
graph from A would produce another graph in A. The characterizations are often written as a set of
operations, which when repeatedly applied to a starting graph of one vertex (either in a specified
order or in any order), would produce all graphs in A (considering all possible combinations of
applying these operations). Moreover, the characterizations are derived from various types of tree
decompositions, including modular decomposition, split decomposition, and bi-join decomposition.

For the purposes of this paper, we focus on the vertex incremental characterizations presented
by Cicerone and Di Stefano [9] and de Montgolfier and Rao [13], which fully describe (6,2)-chordal
bipartite graphs, (Cs, bull, gem, co-gem)-free graphs, and parity graphs. All of these are derived
from the split decomposition [9], except for (Cs, bull, gem, co-gem)-free graphs, which is derived
from the bi-join decomposition [13]. Their characterizations involve the following operations:

Pick a vertex x in G, add a new vertex x’ to G, and

e Pendant: add edge x—x'.

e SO Y
OGP O

Pendant True twin False twin True anti-twin ~ False anti-twin Bipartite

Table 2. Vertex incremental operations; the vertex/vertices in purple is the vertex x/vertices {xi,...,x,} (the
vertex/vertices picked), and the vertices/edges in blue are the vertices/edges added due to the operation.
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True False

Graph Pendant True twin False twin anti-twin anti-twin Bipartite
3-leaf[19] 1 2

Cograph[25] X X

Distance-

hereditary [25] X X X

(Cs, bull, gem,

co-gem)-free[13] X X X X

(6, 2)-chordal

bipartite[8] X X

Parity [9] X X X

Table 3. Vertex incremental descriptions of certain graph classes; the numbers denote operations that must
be performed in a certain order (e.g., 3-leaf power graphs are characterized by some number of pendant
operations followed by some number of true twin operations), while the Xs denote operations that can be
performed in any order.

e True twin: add edge x—x', and for all y € N(x), add edge x'—y.

e Fulse twin: for all y € N(x), add edge x'-y.

e True anti-twin: add edge x—x’, and for all y ¢ N(x), add edge x'-y.
e Fulse anti-twin: for all y ¢ N(x), add edge x'—y.

Pick a set of false twins X = {x1,x2,...,%x,} in G (where x;,x; € X if N(x;) = N(x;) and
(x,-,xj) §é E(G)) and

e Bipartite: add a bipartite graph B = V| UV, to G (where V| and V; is a bipartition of B
such that every edge in B connects a vertex from V) to a vertex from V5), identifying
certain vertices in V| with the false twins.

Table 2 contains examples of each of the operations. Table 3 describes which operations characterize
which graph classes. Note that in [9], Cicerone and Di Stefano incorrectly claim that the vertex
incremental characterization for (6,2)-chordal bipartite graphs is for (6,2)-chordal graphs (while
in [8], Cicerone and Di Stefano correctly attribute the characterization to (6,2)-chordal bipartite
graphs). We ascertained this by comparing our enumeration derived from the vertex incremental
characterization to our enumeration of distance-hereditary bipartite graphs (which is equivalent to
(6,2)-chordal bipartite graphs).

4.2. Results: Enumerations

Lumbroso [28] wrote code to generate and enumerate 3-leaf power graphs and distance-hereditary
graphs based on their vertex incremental characterizations. We extend upon his code to generate and
enumerate (6,2)-chordal bipartite graphs, (Cs, bull, gem, co-gem)-free graphs, and parity graphs.
The code and generated graphs can be found in Appendix B. Table 4 contains all of the generated
enumerations. Note that Hougardy [23] has previously generated the enumeration for parity graphs,
and our derivation matches this enumeration.
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n 1 23 4 5 6 7 8 9 10
Connected (6,2)-chordal bipartite 1 11 3 5 15 37 119 365 1258
(6,2)-chordal bipartite 1 2 3 7 13 33 79 229 671
Connected (Cs, bull, gem, co-gem)-free 1 1 2 6 18 73 308 1484

(Cs, bull, gem, co-gem)-free 1 2 4 11 31 114 454 2078

Connected parity 1 1 2 6 18 75 318 1599 8439

Parity 1 2 4 11 31 116 466 2207 11258

Table 4. Enumeration of various graph classes, derived from vertex incremental characterizations.

4.3. Results: Vertex incremental trees

Nakano et al. [25] obtained upper bounds on the number of distance-hereditary graphs by creating
trees from the vertex incremental characterization, labeling the internal nodes of the trees with the
type of operation used to construct each graph. They also normalized these trees and evaluated
the upper bound space complexity of such a tree to obtain an upper bound on the number of
distance-hereditary graphs. We make an argument parallel to this for (6,2)-chordal bipartite graphs
and (Cs, bull, gem, co-gem)-free graphs.

4.3.1. (6,2)-chordal bipartite graphs We begin with some concepts and lemmas that Nakano et al.
[25] introduce. Specifically, given a graph G such that V(G) > 3, they define the following vertex
sets:

S={S|x,ye Sif Nx] =NJ[y| and |S| > 2}
W={W [x,y e Wif N(x) = N(y), [W| =2, and [N(x)| = [N(y)| > 1}
P ={P|x,y € Pif xis a pendant vertex and y is its neck}.

Note that S corresponds with vertices generated by the true twin operation, also known as strong
twins, VYV corresponds with vertices generated by the weak twin operation, also known as weak
twins, and P corresponds with vertices generated by the pendant operation.

Nakano et al. [25] also prove the following three lemmas:

Lemma 4.1. For each P in P, P contains exactly one neck with associated pendants.

Lemma 4.2. Let v be any vertex in a distance-hereditary graph G where |V(G)| > 3. Then, v
belongs to either

1. exactly one set in SUWUTP, or

2. no set in the families.
Lemma 4.3. For any distance-hereditary graph G, SUWUP # 0.

Note that (6,2)-chordal bipartite graphs are a subset of distance-hereditary graphs [15], so all
of the above lemmas hold. Moreover, under the assumption that V(G) > 3, we have S = 0 by the
vertex incremental characterization.
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Construction of a C-tree. Nakano et al. [25] use these lemmas to construct a DH-tree, to describe
distance hereditary graphs. Here, we construct a C-tree in a similar manner. Note that a C-tree is
rooted, ordered, and each internal node of the C-tree is labeled.

We begin with three basic cases for a (6,2)-chordal bipartite graph G:

1. G is asingle vertex: the C-tree is defined to be a single root with no label

2. Gis a star of size n = 2: the C-tree is defined to be a single root with label p and 2 leaves with
no labels. The leaves can be in any order (note that Lemma 4.1 does not apply here, since
n <3).

3. G is astar of size n > 3: the C-tree is a tree with a single root with label p and n leaves with
no labels. Note that the tree is ordered, so the leftmost child of the node with label p indicates
the neck; in this case, the leftmost child corresponds to the center of the star, and the other
children correspond to the extremities.

Note that the number of leaves of the tree is the number of vertices in G, and this fact remains
invariant for all C-trees. Now, we consider the general case. Given a (6,2)-chordal bipartite graph
G with |[V(G)| =n > 3, we define its C-tree 7. Assume that G is not a star with n vertices. We start
with n leaves of 7 which are initially independent, and we identify each leaf with a vertex v € G.
More formally, we construct an injection ¢ : V(G) — V(7T) which maps v € V(G) to a unique leaf
of T.

By Lemmas 4.2 and 4.3, we can group the vertices of G into three families, S, WV, and P with
SUWUP # 0. We place the vertices that do not belong in one of these three families into a set
N. Since by the vertex incremental characterization of G there is no true twin operation, S = 0.
Thus, we group the vertices of G into two disjoint families, VV and P, and one set disjoint from all
elements in the two families, N.

For any set W € W, we consider the leaves associated with W in 7 ({¢(w) | w € W}) and make
a common parent of these leaves with label w, where the leaves are placed in any arbitrary order.
Similarly, for any set P € P, we consider the leaves associated with P in 7 ({¢(p) | p € P}) and
make a common parent of these leaves with label p. By Lemma 4.1, P has a unique neck v, so we
make the associated leaf ¢ (v) the leftmost child of the parent. The rest of the leaves are placed in an
arbitrary order to the right of v.

Next, we construct a set of vertices V C V(G). For every vertex set W € W, we choose any
vertex w € W and put it in V. Similarly, for every vertex set P € P, since by Lemma 4.1 P has a
unique neck v, we put v in V. For every vertex u € N, we place u in V. Note that the subgraph H of
G induced by V is still a (6,2)-chordal bipartite graph. This arises directly from the definition; any
subgraph of a bipartite graph is bipartite, since if we consider a bipartition of G, say G| and G,
such that every edge connects a vertex from Gy to a vertex in G,, we can consider the bipartition
of H givenby Hi={g € H|g€ G} and H, = {g € H | g € G,} and necessarily, every edge in
H connects a vertex from H; to a vertex in H>. Moreover, if there exists a cycle of length at least
5in H, the cycle must have at least 2 chords in G, say edges e¢; = (x1,y1) and ey = (x2,y2) where
X1,y1,X%2,¥2 € V. =V(H). Since V induces H, necessarily e|,e; € H, so the cycle has at least 2
chords in H. Thus, H is a (6,2)-chordal bipartite graph.

We now construct an injection ¢’ : V(H) — V(T") which maps each vertex v € V(H) =V to the
parent of @ (v) if it exists, and otherwise to ¢ (v). We can now repeat all of the above steps, except
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using H and ¢’ instead of G and ¢. We stop when H matches one of the basic cases mentioned
initially, which we use to complete the tree 7. See Figure 14 for an example of a C-tree and Figure
15 for the corresponding (6,2)-chordal bipartite graph.

Theorem 4.4. We can construct the C-tree T derived from graph G if and only if G is a (6,2)-
chordal graph.

Proof. From Lemmas 4.2 and 4.3, and the above constructive description of the C-tree, it is clear
that given a (6, 2)-chordal graph G, we can construct a corresponding C-tree 7. Thus, we only need
to prove that given a C-tree 7, we can construct the corresponding (6,2)-chordal graph. Consider
any C-tree 7 and a level order tree traversal {t1,...,1,,} wheret; € V(T) and m = |V (T)|. Let n be
the number of leaves in 7. We begin constructing graph G, where G starts with n vertices and no
edges. Define a surjection p : V(7)) — V(G) which maps each leaf in 7 to a unique vertex in V(G)
and each internal node in 7 to p(¢) where / is the leftmost child of that internal node.

Now, consider #; and its children {cy,...,cs} where ¢; is its leftmost child. We define the
following operations, corresponding to the label of #;:

e p:addedge (p(c1),p(ci))toGforall 1 <i<s.

e w: add edge (c,p(ci)) to G forall c € N(p(cy))and 1 <i<s.
Apply the operation corresponding with the label of #; to G, and then repeat this process for all #;
such that #; is not a leaf, in the level order given.

Since we have essentially repeatedly applied the vertex incremental operations for (6,2)-chordal
bipartite graphs in this process, G is a (6,2)-chordal bipartite graph. It is also clear that G is the

graph corresponding to the C-tree 7 by our earlier constructive description of the C-tree, by the
vertex incremental operations used to create G. 0

Corollary 4.5. For any (6,2)-chordal bipartite graph G, the C-tree derived from G is uniquely
determined.

Proof. This follows from the fact that the families V and P are uniquely determined. [

Lemma 4.6. Let G be a (6,2)-chordal bipartite graph that contains at least 2 vertices and let T be
the corresponding C-tree. Then, we have the following:
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1. Each internal node has at least two children.
2. Each inner node has a label, either p or w, and each leaf has no label.

3. The label of the root is p.

Proof. All three statements follow immediately from the construction of the C-tree. [

Note that C-trees may be redundant, so we introduce here some rules for a normalized C-tree,

which match the rules introduced by Nakano et al. [25] for normalized DH-trees. Specifically,

we have the following two rules for a C-tree 7, which preserve the corresponding (6,2)-chordal

bipartite graph G:

1. Given a node labeled p, say node p;, with a non-leftmost child labeled w, say node w{, which
in turn has children {cj,...,c,}, we can remove node w; and make p; the parent of the
children {cy,...,c,}. Thus, in a normalized C-tree, any non-leftmost child of a node with
label p is not labeled w. See Figure 16 for an example.

2. Given a node labeled w, say node wy, with a child labeled w, say node w,, which in turn
has children {cy,...,c,}, we can remove node w, and make w; the parent of the children
{c1,...,cn}. Thus, in a normalized C-tree, any child of a node with label w is not labeled w.
See Figure 17 for an example.

Based on Theorem 4.4, Corollary 4.5, and Lemma 4.6, we obtain the following grammar for
C-trees C7, which is also an upper bound grammar for connected (6,2)-chordal bipartite graphs:

Cr="
P=(P+W+2Z)xSET>(P+Z)
W = SET>, (P + 2)

The following list explains the symbols for each class:

e P: An internal node with label p

e WV: An internal node with label w

— —
a ° C
a b C a b C
b c a b
Figure 16. Normalizing a node labeled p with a Figure 17. Normalizing a node labeled w with a
non-leftmost child labeled w. child labeled w.
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Note that the grammar for a multiply rooted C-tree Cr 7, which is also an upper bound grammar for
(6,2)-chordal bipartite graphs, uses the same symbols as above and is given by Cr7 = SET (Z —I-P).

Proof. These follow directly from the construction of a normalized C-tree and the requirements in
Lemma 4.6. Nodes labeled with p cannot have a non-leftmost child labeled w, and nodes labeled
with w cannot have a child labeled w. 0

Using Maple with the combst ruct package, we receive the following enumeration:

Corollary 4.7. The first few terms of the OGF of the class of C-trees, which is also an upper bound
OGF of the class of connected (6,2)-chordal bipartite graphs, is

Cr(z) = 2422 +42° + 167 +702° + 32220 + 155677 + 775728 +396987° +207217'0+ . ..

Note that in Section 4.2 we obtain an exact enumeration of connected (6,2)-chordal bipartite
graphs C¢, specifically

Co(z) =24+ 22+ 122 + 324 + 522 +152° 4+ 377" +1192% + 3657 + 1258710+ ... .,

so the first few terms of the upper bound OGF of connected (6,2)-chordal bipartite graphs appear
to be correct.

Corollary 4.8. The first few terms of the OGF of the class of multiply rooted C-trees, which is also
an upper bound OGF of the class of (6,2)-chordal bipartite graphs, is

Cr7(z) = 24222 +62° + 232 + 9727 4+ 4467° + 214077 + 1066275 + 544827° + ... .

&
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Figure 18. Plot of the ratio between consecutive terms of the generating function for (6,2)-chordal bipartite
graphs.
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Note that in Section 4.2 we obtain an exact enumeration of (6,2)-chordal bipartite graphs C,
specifically

C(z) =242 +33 + 7 +1322 + 3325 +7977 + 2298 +6712° + . ..,
so the first few terms of the upper bound OGF of (6,2)-chordal bipartite graphs appear to be correct.

Corollary 4.9. Analytically, an upper bound on the number of (6,2)-chordal bipartite graphs is
o(7").

Proof. Using Maple, we plotted the ratio between the first 500 consecutive terms of the generating
function obtained in Corollary 4.8. The plot is shown in Figure 18, and it indicates an asymptote
below 7. As such, we have an analytically obtained upper bound of 0(7"). U

4.3.2. (Cs bull, gem, co-gem)-free graphs We begin with some of the same constructions used
in Section 4.3.1. Given a graph G such that V(G) > 3, we define four vertex sets. For clarity, we
rename the families S and W, and introduce two new families as follows:

ST ={S|x,ye Sif Njx] =N[y| and |S| > 2}
WT ={W | x,y e Wif N(x) =N(y) and |[W| > 2}
SA= {{Wl,Wz} ’ xew andy ew, ifN(x) = V(G) \N(y) and ’le, ‘Wz‘ > 1}
WA={{S,8} |xe S andy € S, if Nx| =V (G) \N|y] and |S1|,|S2| > 1}
Note that ST corresponds with vertices generated by the true twin operation, W7 corresponds
with vertices generated by the false twin operation, S.A corresponds with vertices generated by
the true anti-twin operation, and VWA corresponds with vertices generated by the false anti-twin
operation. Also note that by construction, for any {W;,W>} € S.A, we must have W, W, € WT if

|Wi|,|[Wa| > 2. Similarly, for any {S,S2} € W.A, we must have S,5, € ST if [S1],]S2] > 2.
We now prove the following observations:

Lemma 4.10. Let v be any vertex in a (Cs, bull, gem, co-gem)-free graph G where |V(G)| > 3.
Then v belongs to

1. exactly one set in STUWT U (UwesaW) U (UsewaS), or
2. exactly two sets, one in ST and one in an element of W.A, or
3. exactly two sets, one in W and one in an element of S A, or

4. no set in the families.

Proof. The proof is very similar to that of Lemma 4.2, which can be found in Nakano et al.’s work
[25]. The full proof is in Appendix A.1. [

Lemma 4.11. For any (Cs, bull, gem, co-gem)-free graph G,

STUWTU( |J w)u( U 8)#o.
WeSA SEWA
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Proof. This follows directly from the vertex incremental characterization of (Cs, bull, gem, co-
gem)-free graphs given in Table 3. Necessarily, such a graph G can be generated by a sequence of
operations, and based on the last operation in that sequence, at least one of the sets in S7, WT,
Uwesa W, or Ugey 4 S must be nonempty. [

Construction of a B-tree. Now, note that the construction of a B-tree is similar to the construction
of the DH-tree by Nakano et al. [25] and to the construction of the C-tree in Section 4.3.1. As such,
we defer a full construction to Appendix A.l. Note that a B-tree is rooted, ordered, and each internal
node of the B-tree is labeled with st, wt, sa, or wa.

Theorem 4.12. We can construct the B-tree T derived from graph G if and only if G is a (Cs, bull,
gem, co-gem)-free graph.

Proof. The proof is very similar to that of Theorem 4.4. As such, we defer a full proof to Appendix
A.l. ]

Corollary 4.13. For any (Cs, bull, gem, co-gem)-free graph G, the B-tree derived from G is uniquely
determined.

Proof. This follows from the fact that the families S7, WT, S A, and W.A are uniquely determined.
O]

Lemma 4.14. Let G be a (Cs, bull, gem, co-gem)-free graph that contains at least 2 vertices and let
T be the corresponding B-tree. Then, we have the following:

1. Each internal node has at least two children.
2. Each internal node has label st, wt, sa, or wa, and each leaf is unlabeled.
3. Each internal node labeled sa or wa has exactly two children.

4. The label of the root is st.
Proof. All of these statements follow immediately from the construction of the B-tree. [

Note that B-trees may be redundant, so we introduce here some rules for a normalized B-tree,
which match the rules introduced by Nakano et al. [25] for normalized DH-trees. Specifically, we
have the following four rules for a B-tree 7, which preserve the corresponding (Cs, bull, gem,
co-gem)-free graph G:

1. Given a node labeled st, say node s, with a child labeled st, say node s,, which in turn
has children {cy,...,c}, we can remove node s, and make s; the parent of the children
{c1,...,¢2}. Thus, in a normalized B-tree, any child of a node with label sz is not labeled st.
See Figure 19 for an example.

2. Given a node labeled wt, say node wy, with a child labeled wt, say node w,, which in turn
has children {cy,...,cz}, we can remove node w, and make w the parent of the children
{c1,...,¢2}. Thus, in a normalized B-tree, any child of a node with label wr is not labeled wt.
See Figure 20 for an example.
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Figure 19. Normalizing a node labeled st with a Figure 20. Normalizing a node labeled wt with a
child labeled st. child labeled wr.
— —
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Figure 21. Normalizing a node labeled sa with a Figure 22. Normalizing a node labeled wa with

child labeled sa. a child labeled wa.

3. Consider a node labeled sa with two children, nodes w; and w,, where node wy has label sa.
Let node w; have two children, nodes c¢; and ¢,, where node ¢y is the left child. Then, we can
replace node wy with its left child ¢; and replace node w; with an internal node labeled wt,
with two children ¢, and w,. Thus, in a normalized B-tree, any child of a node with label sa
is not labeled sa. See Figure 21 for an example.

4. Consider a node labeled wa with two children, nodes s; and s,, where node s; has label wa.
Let node s; have two children, nodes ¢; and ¢», where node ¢ is the left child. Then, we can
replace node s; with its left child c¢; and replace node s, with an internal node labeled s¢, with
two children c¢; and s,. Thus, in a normalized B-tree, any child of a node with label wa is not
labeled wa. See Figure 22 for an example.

Based on Theorem 4.12, Corollary 4.13, and Lemma 4.14, we obtain the following grammar
for B-trees B, which is also an upper bound grammar for connected (Cs, bull, gem, co-gem)-free
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graphs:

Br=8T

ST =SET»(WT +SA+ WA+ Z)
WT = SET>3 (ST +SA+ WA+ Z)
SA=SEQ(ST+WT + WA+ Z)
WA =SEQ (ST+WT +SA+Z)

The following list explains the symbols for each class:

e S7: An internal node with label st
e WT: An internal node with label wt
e S A: An internal node with label sa
e WA: An internal node with label wa

Note that the grammar for a multiply rooted B-tree Br 7, which is also an upper bound grammar

for (Cs, bull, gem, co-gem)-free graphs, uses the same symbols as above and is given by Br1 =
SET(Z+ST).

Proof. These follow directly from the construction of a normalized B-tree and the requirements in
Lemma 4.14. Nodes labeled ST and WT cannot have children labeled ST and WT respectively.
Similarly, nodes labeled S.A and YW.A cannot have children labeled S.A and W.A. O]

Using Maple with the combst ruct package, we receive the following enumeration:

Corollary 4.15. The first few terms of the OGF of the class of B-trees, which is also an upper bound
OGF of the class of connected (Cs, bull, gem, co-gem)-free graphs, is

Br(z) =z+7>+42° +267* +1742° +13182° 4 103267" +84195° + ...

Note that in Section 4.2 we obtain an exact enumeration of connected (Cs, bull, gem, co-gem)-
free graphs B, specifically

Be(z) = z+2° 4222 + 67 + 1827 +732° + 30877 + 148478 + ..,

so the first few terms of the upper bound OGF of (Cs, bull, gem, co-gem)-free graphs appear to be
correct.

Corollary 4.16. The first few terms of the OGF of the class of multiply rooted B-trees, which is also
an upper bound OGF of the class of (Cs, bull, gem, co-gem)-free graphs, is

Br7(z) = 2+22° + 62> + 3374 + 2112° + 15662° + 121747 + 987718 + .. ..

Note that in Section 4.2 we obtain an exact enumeration of (Cs, bull, gem, co-gem)-free graphs
B, specifically

B(z) = z+222 +42° + 1124 +312° + 1142° + 4547 +207828 + ...,

so the first few terms of the upper bound OGF of (Cs, bull, gem, co-gem)-free graphs appear to be
correct.
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Figure 23. Plot of the ratio between consecutive terms of the generating function for (Cs, bull, gem, co-gem)-
free graphs.

Corollary 4.17. Analytically, an upper bound on the number of (Cs, bull, gem, co-gem)-free graphs
is O(11").

Proof. Using Maple, we plotted the ratio between the first 500 consecutive terms of the generating
function obtained in Corollary 4.16. The plot is shown in Figure 23, and it indicates an asymptote
below 11. As such, we have an analytically obtained upper bound of O (1 l"). [

4.4. Next steps

It may be possible to obtain upper bounds on the number of parity graphs by extending the results of
Nakano et al. [25], and in particular, obtain tighter bounds by using symbolic grammars. The main
difficulty with parity graphs is the bipartite operation, which may be difficult to normalize in a tree.

Also, Nakano et al. [25] obtained an upper bound for the number of distance hereditary graphs
by considering a compact encoding of the corresponding DH-tree. Such a compact encoding of
the C-trees or B-trees considered in this section may provide a better bound than the analytic one
obtained from constructing a grammar.

5. Conclusion

In this work, we have studied parity graphs through their split trees and have obtained an upper
bound grammar. We have also studied (6,2)-chordal bipartite graphs, (Cs, bull, gem, co-gem)-free
graphs, and parity graphs through their vertex incremental characterizations and have constructively
obtained an enumeration for each graph class. Moreover, we have constructed upper bound grammars
for (6,2)-chordal bipartite graphs and (Cs, bull, gem, co-gem)-free graphs, and have analytically
obtained upper bounds of O (7") and O(l 1”) respectively.

Note that we have not obtained an exact grammar for parity graphs due to the complexity of the
generating function for bipartite graphs, as given by Hanlon [21]. It may be possible to obtain an
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exact grammar if we can successfully integrate this generating function. Moreover, in the future, we
aim to obtain a Boltzmann sampler for parity graphs by further extending upon Iriza’s work [26].

We also aim to obtain a tree for parity graphs derived from its vertex incremental characteriza-
tion, in a similar manner to our derivations of the C-tree and B-tree in Section 4.3 and to Nakano et
al.’s [25] derivation of the DH-tree. In addition, Nakano et al. [25] considered a compact encoding
of the DH-tree to obtain an upper bound on the number of distance hereditary graphs; it may be
useful to consider a compact encoding of the C-tree and B-tree, and compare the upper bound
obtained with the analytically derived upper bounds from Section 4.3.
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Appendix A. Proofs

In this appendix section, we list some proofs that were omitted from the paper.

A.l. Results: Vertex incremental trees

Lemma 4.10 Let v be any vertex in a (Cs, bull, gem, co-gem)-free graph G where |V (G)| > 3.
Then v belongs to

1.
2.
3.
4.

exactly one set in STUWT U (UwesaW) U (UseywaS) or
exactly two sets, one in S7 and one in an element of WA, or
exactly two sets, one in YVT and one in an element of S.A, or

no set in the families.

Proof. If v € V(G) belongs to no set, then we are done. Thus, we consider the case where v belongs
to at least one set. We now have four cases.

1.

v is in a set S in ST. We first assume that there is some distinct set S’ € ST such that
v € S. Then, for any s € S and s’ € §', we have N[s] = N[v] = N|s'], so S = ', which is a
contradiction. So, for all ' € ST where S’ # S, we have v ¢ §'.

Now, we assume that there is a set W € WT such that v € W. By assumption, N[v] = N|s]
for some s € S, and N(v) = N(w) and (v,w) ¢ E(G) for some w € W. Since N[v| = N[s|, we
have (s,v) € E(G). Since N(v) = N(w), we have s € N(v) = N(w), so (s,w) € E(G). Thus,
w € N[s|] = N[v], so we have (v,w) € E(G), which is a contradiction. So, for all W € WT,
we have v ¢ W.

Finally, we assume that for some set A = {A,A} € SA, v € A|. By assumption, N[v| =
N[s] for some s € Sand N(v) =V (G) \ N(a) for some a € A, which implies that N[v| \N[a] =
{v,a}. Note that since N[v] = N|s|, we have s € N[s] = N|v]. Since N[v| N\ N[a] = {v,a}, we
have (v,a) € E(G), so a € N[v] = N|s|. Thus, since a € N[s|, we have (s,a) € E(G), so
s € Nla]. Since N[v|\N[a] = {v,a}, we have s ¢ N[v], which is a contradiction. So, for all
A={A1,A2} € SA, wehavev ¢ A;.

visin aset W in WT. Assume that there is some distinct set W € WT such that v € W'.
Then, for any w € W and w' € W/, we have N(w) = N(v) = N(w'), so W =W/, which is a
contradiction. So, for all W' €' mathcalW T where W’ # W, we have v ¢ W',

By 1,forall S € ST, we have v ¢ S.

Now, assume that there is a set A = {A],A>} € WA such that v € A|. By assumption,
N(v) = N(w) for some w € W and N[v] = V(G) \ N|a] for some a € A;. Note that since N(v) =
N(w), we have w ¢ N(w) = N(v), sow ¢ N[v]. Since N[v] = V(G) \ N[a], we have w € N|a],
so (w,a) € E(G). Thus, a € N(w) = N(v), so (v,a) € E(G). Since N[v] = V(G) \ N|a], and
since a € Nlal], we have a ¢ N[v| and (v,a) ¢ E(G), which is a contradiction. Thus, for all
A={A1,A2} e WA, wehavev ¢ A.

. For some W = {W|,W,} € SA, v is in W;. Note that it is impossible for v to be in W5,

since in that case N(v) = V(G) \N(v), but v ¢ N(v) and v € V(G) \ N(v) = N(v), which
is a contradiction. So, consider the case where for some distinct W = {W/,W;} € SA,
v € W{. Thus, for all w € W,, we have N(w) = V(G) \ N(v), and for all w' € W,, we have

28



N(w") =V(G)\ N(v). Note that necessarily, W, = {w € V(G) | N(w) = V(G) \ N(v)}, since
any v/ € W) must be a false twin of v by definition, and similarly, W; = {w' € V(G) | N(w') =
V(G)\N(v)}. Thus, W, = Wj, and necessarily, W; = W/, so W = W’, which is a contradiction.
So, for all W' = {W],W,} € SA where W' # W, we have v ¢ W/.

By 1,forall S € ST, we have v ¢ S.

Now, assume that there is a set S = {S},5,} € WA such that v € ;. Thus, we have
for some w € Wy, N(v) = V(G) \ N(w), which implies (w,v) € E(G), and for some s € S,
N[v] = V(G) \ N|s|, which implies (s,v) ¢ E(G). Since (w,v) € E(G), we have w € N[v],
so w ¢ N[s|] and (w,s) ¢ E(G). Since (s,v) ¢ E(G), we have s ¢ N(v), so s € N(w) and
(w,s) € E(G), which is a contradiction. Thus, for all § = {S},5,} € WA, we have v ¢ S.

4. For some S = {51,582} € WA, visin S;. Note that it is impossible for v to be in S, since in
that case N[v] =V (G) \ N[v],butv € N[v] and v ¢ V(G) \ N|v] = N|v], which is a contradiction.
So, consider the case where for some distinct §' = {S,8,} € WA, v € §). Thus, forall s € S5,
we have N[s] = V(G) \ N]v], and for all s’ € S}, we have N[s'] = V(G)\ N[v]. Note that
necessarily, S, = {s € V(G) | N[s] = V(G) \ N|v]}, since any V' € S| must be a true twin of
v by definition, and similarly, S = {s' € V(G) | N[s'] = V(G) \ N[v]}. Thus, S, = S}, and
necessarily, S| = S}, so S =5, which is a contradiction. So, for all §' = {S/,5}} € W.A where
S’ # S, wehave v ¢ 5.

By 2, forall W € WT, we have v ¢ W.
By 3, forall W = {W;,W,} € SA, we have v ¢ W).

This covers all of the cases. ]

Construction of a B-tree, from Section 4.3.2 We construct a B-tree in a similar manner to the
DH-tree constructed by Nakano et al. [25] and to the C-tree constructed previously in Section 4.3.1.
Note that a B-tree is rooted, ordered, and each internal node of the B-tree is labeled. We begin with
two basic cases for a (Cs, bull, gem, co-gem)-free graph G:

1. G is a single vertex: the B-tree is defined to be a single root with no label.

2. G is aclique of size n > 2: the B-tree is defined by a single root with label st and n leaves
with no labels (in any order).

Note that the number of leaves of the tree is the number of vertices in G, and this fact remains
invariant for all B-trees. Now, consider the general case. Given a (Cs, bull, gem, co-gem)-free graph
G with |V(G)| > 3, we define its B-tree 7. Assume that G is not a clique. We start with n leaves of
7 which are initially independent, and we identify each leaf with a vertex v € G. More formally, we
construct the injection ¢ : V(G) — V(7) which maps each v € V(G) to a unique leaf of 7.

By Lemmas 4.10 and 4.11, we can group the vertices of G into four families, ST, WT, SA,
and WA, such that they are not all empty. We place vertices that do not belong in one of those
families into a set N. Note that by Lemma 4.10, the familes are all disjoint, except for the pairs S.A
and WT, and WA and ST.

For any set S € ST, we consider the leaves associated with Sin 7 ({¢(s) | s € S}) and make a
common parent of these leaves with label sz. Similarly, for any set W € WT, we consider the leaves
associated with W in 7 ({¢(w) | w € W}) and make a common parent of these leaves with the label
wt.
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Now, consider any set W = {W;,W,} € SA. If [W;| = |W»| = 1, we consider the leaves asso-
ciated with w; € Wy and wy € W, (namely, ¢ (w;) and @ (w,) respectively) and make a common
parent of those leaves with label sa. If, without loss of generality, |W;| = 1 and |W»| > 1, where
w1 € W, we place wy into N.

Similarly, we consider any set S = {S1,5,} € WA. If |S|| = |S2| = 1, we consider the leaves
associated with s; € S| and s, € S, (namely, ¢(s;) and ¢ (s,) respectively) and make a common
parent of those leaves with label wa. If, without loss of generality, |S;| = 1 and |Sz| > 1, where
s1 € S1, we place s; into N. Note that in all of these cases, the leaves can be arranged in any order.

Next, we construct a set of vertices V C V(G). For each parent node created in the previous
step, we choose the leftmost child ¢ and place ¢! (c) in V (this inverse necessarily exists, by our
construction). We can in fact use any arbitrary child c if the parent node is labeled st or wz, but the
ordering is important for a parent node labeled sa or wa. For every vertex u € N, we place uin V.

If |V| =2,say a;,b; €V, and (a1,b1) ¢ E(G), then we consider the parent nodes of ¢ (a;) and
¢ (D), each of which must have another child, say ¢ (a,) and ¢ (b;) respectively. Necessarily, we
must have for some 1 <i,j <2, (a;,b j) € E(G). This is easy to show by casework, considering all
possible labels of the parent nodes of ¢(a;) and ¢(b;). We move ¢ (a;) and ¢ (b;) so that they are
the leftmost children of their respective parent nodes, and we let V = {a;,b;}.

Note that the subgraph H of G induced by V is still a (Cs, bull, gem, co-gem)-free graph, since
if G does not contain a cycle graph of size 5, a bull graph, a gem graph, or the complement of a gem
graph, then neither does H.

We now construct an injection ¢" : V(H) — V(T ) which maps each vertex v € V(H) =V to the
parent of @ (v) if it exists, and otherwise to ¢ (v). We can now repeat all of the above steps, except
using H and ¢’ instead of G and ¢. We stop when H matches one of the basic cases mentioned
initially, which we use to complete the tree 7. See Figure 24 for an example of a B-tree and Figure
25 for the corresponding (Cs, bull, gem, co-gem)-free graph.

Theorem 4.12 We can construct the B-tree 7 derived from graph G if and only if G is a (Cs, bull,
gem, co-gem)-free graph.

Proof. From Lemmas 4.10 and 4.11, and the above constructive description of the B-tree, it is
clear that given a (Cs, bull, gem, co-gem)-free graph, we can construct a corresponding B-tree
T. Thus, we only need to prove that given a B-tree 7, we can construct the corresponding (Cs,
bull, gem, co-gem)-free graph. Note that this construction is identical to the one in Theorem 4.4,

()
() (s
O IO '

4 3 6 7

Figure 25. (Cs, bull, gem, co-gem)-free graph for
1 2 4 3 5 the B-tree in Figure 24.

Figure 24. Example of a B-tree.
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with the exception of the operations corresponding to the label of each t; € V(7). Thus, we list
the operations here and refer the reader to Theorem 4.4 for the full proof. Given t; € V(7) and its
children {cy,...,cs} where ¢ is its leftmost child, we define the following operations, corresponding
to the label of ¢;:

e st:add edges (p(cy),p(ci)) and (¢,p(c;)) to G forall c € N(p(cy)) and 1 < i <s.
e wr: add edge (c,p(c;)) to Gforallc € N(p(cy))and 1 <i<s.

e sa: there can only be 2 children (by definition), ¢; and c¢,. Add edges (p(c1),p(c2)) and
(c,p(c2)) forall c € N(p(c1)).

e wa: there can only be 2 children (by definition), ¢; and ¢;. Add edge (c,p(cz)) for all
c & N(p(c1)).

Note that as in Theorem 4.4, these operations are essentially the same as the vertex incremental
operations for (Cs, bull, gem, co-gem)-free graphs. [

Appendix B. Relevant code

All relevant code can be found here: https://github.com/PrincetonUniversity/
graphs—-by-tree-decomposition.git. Note that the git repository is currently private; ac-
cess can be granted upon request. The code has also been attached as a supplemental file (sans
generated graphs, due to space constraints).

Iriza [26] wrote a parsing module to translate a split tree string into its corresponding 3-leaf
power graph or distance hereditary graph. We have extended the parsing module to translate a parity
split tree string into its corresponding parity graph, found in unlabeled-graph-samplers.

Lumbroso [28] wrote a program to constructively generate and enumerate 3-leaf power graphs
and distance hereditary graphs using their corresponding vertex incremental characterizations. We
have extended the program to generate and enumerate (6,2)-chordal bipartite graphs, (Cs, bull, gem,
co-gem)-free graphs, and parity graphs. The code and generated graphs, in both image format and
graph6 format, can be found in vertex-incremental.

Appendix C. Survey of tree decompositions

C.1. Modular decomposition

Modular decomposition, also known as substitution decomposition, was first introduced by Gallai
[18]. Its most notable applications are on classes of perfect graphs, including cographs, P4-sparse
graphs, permutation graphs, and interval graphs, and in particular, Lovadsz used modules in his proof
of the perfect graph theorem [27]. We give a cursory description of modular decompsition here and
refer to Mohring and Radermacher’s survey of modular decomposition [31] and McConnell and
Spinrad’s linear time algorithm for modular decomposition [30] for details.

Modular decomposition is essentially a generalization of connected components, and in a
modular decomposition tree, the degenerate graphs are known as parallel (if the component is
connected) or series (if the complement of the component is connected). Table 5 contains a list of
graph classes associated with modular decomposition, information about the prime nodes relating
to those classes (if available), and additional constraints on a modular decomposition tree.

We list supplemental definitions here:
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Graph class Prime nodes Constraints

Cograph (P,-free graph) None None
[20]

Py-sparse graph [32] Prime spider graph No vertex of SUK (for any prime spider with
(see Definition C.1) spider-partition (S,K,R)) is an internal node

Proper interval [10] Representation e The root r is a parallel node

maintained in [22] Every non-leaf children of r is either a prime

node or a series node, with at most one non-
leaf child, which must be a prime node

e The non-leaf children of any prime nodes are
series nodes with only leaf children

Permutation [18, 10] Permutation graph e Prime permutation graphs are unique up to a
realizer (up to reversal)

Table 5. Survey of modular decomposition.

Definition C.1. A spider graph is a graph G such that V(G) admits a partition into sets S, K, and R
such that:

1. |S] = |K]| > 2, the set S is an independent (stable) set, and the set K is a clique;
2. all of the vertices in R are adjacent to all of the vertices in K and no vertices in S;
3. there exists a bijection f : § — K such that one of the following statements holds:

(a) foreach vertex ve S, N(v)NK ={f(v)}, or
(b) foreach vertex ve S, Nv)NK=K—{f(v)}.

The triple (S, K,R) is a spider-partition. A graph G is a prime spider if G is a spider with |R| < 1.

Note that in addition to the graph classes listed in Table 5, Hsu and Ma [24] have developed a
linear time algorithm for modular decomposition on chordal graphs. This algorithm arises from
Capelle’s work [4], in which he proved that computing a modular decomposition tree and computing
a factoring permutation are equivalent.

Moreover, Ravelomanana and Thimonier [36] have generated a symbolic grammar for cographs
using its modular decomposition tree, and have obtained asymptotic bounds from the grammar.

C.2. Split decomposition

We have fully explained the split decomposition, also known as the join decomposition, in Section
3.1. Importantly, split decomposition is a generalization of modular decomposition. Table 6 contains
a list of graph classes associated with split decomposition, information about the prime nodes
related to those classes (if available), and additional constraints on a split tree (we presuppose the
contraints given in the definition of a split tree, in Theorem 3.1).
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Graph class Prime nodes Constraints

Distance-hereditary None None
[19]

Cograph [19] None e Contains a clique node or a tree-edge towards
which all star nodes are oriented

3-leaf power [19] None e The set of star nodes forms a connected subtree

e If u is a star node, then the tree-edge e such
that p,(e) is the center of the star is incident to
a leaf or a clique node

Circle Circle graph [2, 17] e Prime circle graphs are unique up to a realizer
[34]

e Algorithm for detecting prime circle graphs
(and circle graphs in general), in O(nz) time
[38]

Parity [9] Bipartite graph None

Table 6. Survey of split decomposition.

C.3. Bijoin decomposition

Bijoin decomposition was first introduced by Montgolfier and Rao [13] as a new generalization of
modular decomposition. The degenerate graphs are complete bipartite graphs or a disjoint union
of two complete graphs, and the completely decomposable graphs with respect to the bi-join
decomposition are (Cs, bull, gem, co-gem)-free [13, 14]. Montgolfier and Rao [13] also give a linear
time algorithm for computing the bi-join decomposition.
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