[go: up one dir, main page]

login
A277329
a(0)=0, for n >= 1, a(2n) = a(n)+1, a(4n-1) = a(n)+1, a(4n+1) = a(n)+1.
4
0, 1, 2, 2, 3, 2, 3, 3, 4, 3, 3, 3, 4, 3, 4, 4, 5, 4, 4, 3, 4, 3, 4, 4, 5, 4, 4, 4, 5, 4, 5, 5, 6, 5, 5, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 5, 5, 6, 5, 5, 4, 5, 4, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 5, 6, 5, 5, 5, 6, 5, 5, 4, 5, 4, 5, 5, 6, 5, 5, 4, 5, 4, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 5, 6, 5, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 5, 6, 5, 6, 6, 7
OFFSET
0,3
COMMENTS
a(n) gives the index of the greatest prime dividing A260443(n).
Each n >= 1 occurs for the first time at 2^(n-1), which are also the positions of records.
For n >= 1, a(n) = number of terms in row n of A125184.
FORMULA
a(0)=0, for n >= 1, a(2n) = a(n)+1, a(4n-1) = a(n)+1, a(4n+1) = a(n)+1.
Other identities. For all n >= 0:
a(n) = A061395(A260443(n)).
a(2n+1) = max(a(n),a(n+1)).
For n >= 1, a(n) = 1+A057526(n).
PROG
(Scheme)
(define (A277329 n) (if (zero? n) n (+ 1 (A057526 n)))) ;; Code for A057526 given in that entry.
;; Standalone recurrence:
(definec (A277329 n) (cond ((zero? n) n) ((even? n) (+ 1 (A277329 (/ n 2)))) ((= 3 (modulo n 4)) (+ 1 (A277329 (/ (+ 1 n) 4)))) (else (+ 1 (A277329 (/ (+ -1 n) 4))))))
CROSSREFS
One more than A057526.
Sequence in context: A349043 A330036 A050430 * A071330 A374758 A358635
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 27 2016
STATUS
approved