OFFSET
1,8
COMMENTS
If n is in A003586, then T(n,1) = 1, else T(n,1) = 0.
T(n,k) also is the number of ways of representing n involving k 1's in the base(2,3) or "dual-base number system" (i.e., base(2,3)).
The number of "canonic" representations of n in a dual-base number system as defined by the reference as having the lowest number of terms, appears in the first column of the triangle with a value greater than 0.
A237442(n) = the least k with a nonzero value.
REFERENCES
V. Dimitrov, G. Jullien, R. Muscedere, Multiple Number Base System Theory and Applications, 2nd ed., CRC Press, 2012, pp. 35-39.
EXAMPLE
Triangle starts:
1
1
1,1
1,1
0,2
1,1,1
0,2,1
1,1,1
1,2,2
0,3,1,1
0,2,3
1,2,3,1
0,2,4,1
0,2,3,2
0,2,4,3
1,1,4,2,1
0,2,4,3
1,2,4,4,1
0,2,5,4,1
0,3,3,5,1
...
MATHEMATICA
nn = 6^6; t = Sort@ Select[Flatten@ KroneckerProduct[2^Range[0, Ceiling@ Log2@ nn], 3^Range[0, Ceiling@ Log[3, nn]]], # <= nn &]; Table[BinCounts[#, {1, Max@ # + 1, 1}] &@ Map[Length, #] &@ Select[Subsets@ TakeWhile[t, # <= n &], Total@ # == n &], {n, 40}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Michael De Vlieger, Sep 27 2016
STATUS
approved