[go: up one dir, main page]

login
A276807
Number of solutions of the congruence y^2 == x^3 - x^2 - 4*x + 4 (mod p) as p runs through the primes.
2
2, 4, 7, 7, 7, 15, 15, 23, 31, 23, 23, 31, 47, 39, 47, 55, 55, 63, 71, 63, 63, 87, 87, 95, 95, 119, 87, 119, 111, 95, 135, 135, 143, 151, 135, 167, 159, 151, 143, 167, 167, 175, 191, 191, 215, 183, 231, 231, 215, 207, 223, 255, 223, 231, 255, 271, 279, 263, 303, 255
OFFSET
1,1
COMMENTS
This elliptic curve corresponds to a weight 2 newform which is an eta-quotient, namely, eta(2t)*eta(4t)*eta(6t)*eta(12t), see Theorem 2 in Martin & Ono.
LINKS
Yves Martin and Ken Ono, Eta-Quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
FORMULA
a(n) gives the number of solutions of the congruence y^2 == x^3 - x^2 - 4*x + 4 (mod prime(n)), n >= 1.
EXAMPLE
The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used.
The solutions (x, y) of y^2 == x^3 - x^2 - 4*x + 4 (mod prime(n)) begin:
n, prime(n), a(n) solutions (x, y)
1, 2, 2: (0, 0), (1, 0)
2, 3, 4: (0, 1), (0, 2), (1, 0),
(2, 0)
3, 5, 7: (0, 2), (0, 3), (1, 0),
(2, 0), (3, 0), (4, 1),
(4, 4)
4, 7, 7: (0, 2), (0, 5), (1, 0),
(2, 0), (4, 1), (4, 6),
(5, 0)
PROG
(Ruby)
require 'prime'
def A(a3, a2, a4, a6, n)
ary = []
Prime.take(n).each{|p|
a = Array.new(p, 0)
(0..p - 1).each{|i| a[(i * i + a3 * i) % p] += 1}
ary << (0..p - 1).inject(0){|s, i| s + a[(i * i * i + a2 * i * i + a4 * i + a6) % p]}
}
ary
end
def A276807(n)
A(0, -1, -4, 4, n)
end
CROSSREFS
Cf. A276649.
Sequence in context: A342616 A373893 A161211 * A363166 A161368 A023978
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 17 2016
STATUS
approved