OFFSET
0,3
COMMENTS
12-gonal (or dodecagonal) factorial numbers, also polygorial(n, 12).
More generally, the m-gonal factorial numbers (or polygorial(n, m)) is 2^(-n)*(m - 2)^n*Gamma(n+2/(m-2))*Gamma(n+1)/Gamma(2/(m-2)), m>2.
LINKS
Robert Israel, Table of n, a(n) for n = 0..220
Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
FORMULA
MAPLE
seq(mul(k*(5*k-4), k=1..n), n=0..20); # Robert Israel, Sep 18 2016
MATHEMATICA
FullSimplify[Table[5^n Gamma[n + 1/5] (Gamma[n + 1]/Gamma[1/5]), {n, 0, 15}]]
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[12, #] &, 16, 0] (* Robert G. Wilson v, Dec 13 2016 *)
PROG
(PARI) a(n) = prod(k=1, n, k*(5*k - 4)); \\ Michel Marcus, Sep 06 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Sep 05 2016
STATUS
approved