OFFSET
1,3
COMMENTS
A majority of numbers are primes of form m^2+1 (A002496), and it appears that the composite numbers of the form m^2+1: 901, 10001, 20737, 75077, 234257, 266257, 276677, 571537,... are semiprimes.
For n >1, a(n)==1,5 mod 12 and a(n)==1,5 mod 16.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000
EXAMPLE
901 is in the sequence because 901 = 1*901 = 17*53 => 901-1 = 30^2 and 53-17 = 6^2.
MATHEMATICA
t={}; Do[ds=Divisors[n]; If[EvenQ[Length[ds]], ok=True; k=1; While[k<=Length[ds]/2&&(ok=IntegerQ[Sqrt[Abs[ds[[k]]-ds[[-k]]]]]), k++]; If[ok, AppendTo[t, n]]], {n, 2, 10^5}]; t
PROG
(Python)
from __future__ import division
from sympy import divisors
from gmpy2 import is_square
A276460_list = [0]
for m in range(10**3):
k = m**2+1
for d in divisors(k):
if d > m:
A276460_list.append(k)
break
if not is_square(k//d - d):
break # Chai Wah Wu, Sep 04 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 03 2016
EXTENSIONS
Terms 0, 1 added by Chai Wah Wu, Sep 04 2016
STATUS
approved