[go: up one dir, main page]

login
A274936
Number of n-node unlabeled forests that have 2 non-isomorphic components.
4
0, 1, 1, 2, 3, 6, 11, 22, 44, 93, 202, 451, 1033, 2422, 5792, 14075, 34734, 86761, 219188, 558984, 1437927, 3726535, 9723678, 25525112, 67374649, 178723358, 476263051, 1274448596, 3423491458, 9229075121, 24961961679, 67721961268, 184255943244, 502658875034, 1374713643212
OFFSET
0,4
LINKS
FORMULA
G.f.: [A(x)^2 - A(x^2)]/2 where A(x) is the o.g.f. for A000055.
a(2n+1) = A274935(2n+1). a(2n) = A274935(2n)-A000055(n). - R. J. Mathar, Jul 20 2016
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n<2, n, (add(add(d*
b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
end:
g:= proc(n) option remember; `if`(n=0, 1, b(n)-add(b(j)*
b(n-j), j=0..n/2)+`if`(n::odd, 0, (t->t*(t+1)/2)(b(n/2))))
end:
a:= proc(n) option remember; add(g(j)*g(n-j), j=0..n/2)-
`if`(n::odd, 0, (t-> t*(t+1)/2)(g(n/2)))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jul 20 2016
MATHEMATICA
b[n_] := b[n] = If[n<2, n, Sum[DivisorSum[j, #*b[#]&]*b[n-j], {j, 1, n-1}]/(n-1)];
g[n_] := g[n] = If[n==0, 1, b[n]-Sum[b[j]*b[n-j], {j, 0, n/2}]+If[OddQ[n], 0, Function[t, t*(t+1)/2][b[n/2]]]];
a[n_] := a[n] = Sum[g[j]*g[n-j], {j, 0, n/2}]-If[OddQ[n], 0, Function[t, t*(t+1)/2][g[n/2]]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 15 2017, after Alois P. Heinz *)
CROSSREFS
Cf. A000055, A274935-A274938. [A274935, A274936, A274937, A274938] are analogs for forests of [A275165, A275166, A216785, A274934] for graphs.
Sequence in context: A132831 A354208 A007477 * A244521 A096202 A036653
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 19 2016
STATUS
approved