[go: up one dir, main page]

login
A273826
Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x*y + y*z + z*w a fourth power, where x is a positive integer, y is a nonnegative integer, and z and w are integers.
2
1, 5, 5, 3, 8, 6, 5, 4, 2, 11, 5, 5, 10, 1, 3, 1, 9, 15, 4, 9, 2, 4, 6, 2, 13, 13, 10, 7, 8, 6, 3, 5, 9, 14, 6, 9, 13, 9, 9, 10, 13, 11, 5, 4, 14, 5, 8, 5, 6, 15, 10, 17, 14, 13, 6, 1, 18, 17, 2, 8, 8, 5, 17, 3, 23, 15, 9, 17, 10, 9
OFFSET
1,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 16^k*m (k = 0,1,2,... and m = 1, 14, 56, 91, 184, 329, 355, 1016).
(ii) Any positive integer can be written as x^2 + y^2 + z^2 + w^2 with x*y + y*z + z*w a nonnegative cube, where x is a positive integer, y is a nonnegative integer, and z and w are integers.
(iii) For each triple (a,b,c) = (1,1,2), (1,1,3), (1,2,2), (1,2,3), (1,3,4), (1,5,3), (1,6,2), (2,2,6), (4,4,12), (4,4,16), (4,8,8), (4,12,16), (4,20,12), (8,8,16), (8,8,24), (8,8,32), (8,24,16), any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that a*x*y + b*y*z + c*z*w is a fourth power.
For more conjectural refinements of Lagrange's four-square theorem, see the author's preprint arXiv:1604.06723.
LINKS
Yu-Chen Sun and Zhi-Wei Sun, Two refinements of Lagrange's four-square theorem, arXiv:1605.03074 [math.NT], 2016.
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
EXAMPLE
a(1) = 1 since 1 = 1^2 + 0^2 + 0^2 + 0^2 with 1 > 0, 0 = 0 and 1*0 + 0*0 + 0*0 = 0^4.
a(14) = 1 since 14 = 3^2 + 1^2 + (-2)^2 + 0^2 with 3 > 0, 1 > 0 and 3*1 + 1*(-2) + (-2)*0 = 1^4.
a(56) = 1 since 56 = 6^2 + 4^2 + (-2)^2 + 0^2 with 6 > 0, 4 > 0 and 6*4 + 4*(-2) + (-2)*0 = 2^4.
a(91) = 1 since 91 = 4^2 + 7^2 + (-1)^2 + 5^2 with 4 > 0, 7 > 0 and 4*7 + 7*(-1) + (-1)*5 = 2^4.
a(184) = 1 since 184 = 10^2 + 4^2 + (-2)^2 + 8^2 with 10 > 0, 4 > 0 and 10*4 + 4*(-2) + (-2)*8 = 2^4.
a(329) = 1 since 329 = 18^2 + 1^2 + (-2)^2 + 0^2 with 18 > 0, 1 > 0 and 18*1 + 1*(-2) + (-2)*0 = 2^4.
a(355) = 1 since 355 = 17^2 + 1^2 + (-8)^2 + 1^2 with 17 > 0, 1 > 0 and 17*1 + 1*(-8) + (-8)*1 = 1^4.
a(1016) = 1 since 1016 = 2^2 + 20^2 + 6^2 + (-24)^2 with 2 > 0, 20 > 0 and 2*20 + 20*6 + 6*(-24) = 2^4.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
QQ[n_]:=QQ[n]=IntegerQ[n^(1/4)]
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&QQ[x*y+y*(-1)^j*z+(-1)^(j+k)*z*Sqrt[n-x^2-y^2-z^2]], r=r+1], {x, 1, Sqrt[n]}, {y, 0, Sqrt[n-x^2]}, {z, 0, Sqrt[n-x^2-y^2]}, {j, 0, Min[1, z]}, {k, 0, Min[1, Sqrt[n-x^2-y^2-z^2]]}]; Print[n, " ", r]; Continue, {n, 1, 70}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 31 2016
STATUS
approved