[go: up one dir, main page]

login
A273458
Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x-y+z+w a nonnegative cube, where x,y,z,w are integers with x >= y >= 0 and x >= |z| <= |w|.
8
1, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 2, 1, 5, 4, 3, 2, 1, 4, 3, 3, 6, 3, 2, 5, 3, 9, 3, 1, 1, 7, 5, 3, 7, 10, 4, 6, 2, 10, 2, 6, 2, 12, 7, 2, 5, 9, 3, 3, 6, 13, 3, 8, 3, 18, 3, 8, 5, 7, 3, 3, 5, 13, 8, 5, 3, 19, 4, 7, 7, 16, 1, 11, 5, 14, 7, 2, 3, 12, 5, 4
OFFSET
0,2
COMMENTS
Conjecture: a(n) > 0 for all n = 0,1,2,....
In the latest version of arXiv:1605.03074, the authors showed that any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that x + y + z + w is a cube (or a square).
For more conjectural refinements of Lagrange's four-square theorem, see the author's preprint arXiv:1604.06723.
LINKS
Yu-Chen Sun and Zhi-Wei Sun, Two refinements of Lagrange's four-square theorem, arXiv:1605.03074 [math.NT], 2016.
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
EXAMPLE
a(12) = 1 since 12 = 3^2 + 1^2 + (-1)^2 + (-1)^2 with 3 - 1 + (-1) + (-1) = 0^3.
a(17) = 1 since 17 = 2^2 + 0^2 + 2^2 + (-3)^2 with 2 - 0 + 2 + (-3) = 1^3.
a(28) = 1 since 28 = 3^2 + 1^2 + 3^2 + 3^2 with 3 - 1 + 3 + 3 = 2^3.
a(29) = 1 since 29 = 3^2 + 0^2 + 2^2 + (-4)^2 with 3 - 0 + 2 + (-4) = 1^3.
a(71) = 1 since 71 = 5^2 + 1^2 + 3^2 + (-6)^2 with 5 - 1 + 3 + (-6) = 1^3.
a(149) = 1 since 149 = 8^2 + 0^2 + 2^2 + (-9)^2 with 8 - 0 + 2 + (-9) = 1^3.
a(188) = 1 since 188 = 13^2 + 3^2 + 1^2 + (-3)^2 with 13 - 3 + 1 + (-3) = 2^3.
a(284) = 1 since 284 = 15^2 + 5^2 + 3^2 + (-5)^2 with 15 - 5 + 3 + (-5) = 2^3.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
CQ[n_]:=CQ[n]=n>=0&&IntegerQ[n^(1/3)]
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&CQ[x-y+(-1)^j*z+(-1)^k*Sqrt[n-x^2-y^2-z^2]], r=r+1], {y, 0, (n/2)^(1/2)}, {x, y, Sqrt[n-y^2]}, {z, 0, Min[x, Sqrt[(n-x^2-y^2)/2]]}, {j, 0, Min[1, z]}, {k, 0, Min[1, Sqrt[n-x^2-y^2-z^2]]}];
Print[n, " ", r]; Continue, {n, 0, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 22 2016
STATUS
approved