[go: up one dir, main page]

login
A273460
Numbers n such that sum of the divisors of n (except 1 and n) is equal to the product of the digits of n.
1
98, 101, 103, 107, 109, 307, 329, 401, 409, 503, 509, 601, 607, 701, 709, 809, 907, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1201, 1301, 1303, 1307, 1409, 1601, 1607, 1609, 1709, 1801, 1901
OFFSET
1,1
COMMENTS
Or numbers n such that A048050(n) = A007954(n).
Most of the terms are primes which have at least one 0 among their digits (A056709). The composite numbers of the sequence are 98, 329, 3383, 4343, 5561, 6623, 12773, 17267, 21479, 57721, 129383, 136259, 142943, 172793, 246959, 256631, 292571,...
LINKS
EXAMPLE
sigma(98) - 98 - 1 = 171 - 98 - 1 = 72 and 8*9 = 72 so 98 is in the sequence.
MAPLE
with(numtheory):
for n from 1 to 3000 do:
q:=convert(n, base, 10):n0:=nops(q):
pr:=product('q[i]', 'i'=1..n0):p:=sigma(n)-n-1:
if p=pr
then
printf(`%d, `, n):
else
fi:
od:
MATHEMATICA
Do[If[DivisorSigma[1, n]-n-1==Apply[Times, IntegerDigits[n]], Print[n]], {n, 2000}]
Select[Range[2, 2000], Total[Most[Rest[Divisors[#]]]]==Times@@ IntegerDigits[ #]&] (* Harvey P. Dale, Jul 20 2019 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, May 23 2016
STATUS
approved