[go: up one dir, main page]

login
A273270
Number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 625", based on the 5-celled von Neumann neighborhood.
4
1, 4, 21, 29, 72, 84, 141, 168, 260, 289, 369, 384, 528, 564, 684, 728, 948, 976, 1164, 1232, 1412, 1416, 1597, 1705, 2064, 2113, 2361, 2316, 2688, 2776, 3013, 2989, 3492, 3593, 3869, 4117, 4453, 4484, 4793, 4869, 5329, 5516, 6009, 5941, 6408, 6424, 7012
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=625; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
CROSSREFS
Sequence in context: A304770 A316513 A273208 * A273246 A273299 A306285
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 18 2016
STATUS
approved