[go: up one dir, main page]

login
A273151
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 598", based on the 5-celled von Neumann neighborhood.
1
1, 6, 15, 36, 53, 106, 147, 232, 265, 366, 471, 652, 733, 978, 1147, 1488, 1553, 1750, 1951, 2292, 2501, 3130, 3491, 4280, 4441, 4926, 5415, 6236, 6573, 7586, 8267, 9632, 9761, 10150, 10543, 11204, 11605, 12810, 13491, 14984, 15401, 16654, 17911, 20012
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=598; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A273150.
Sequence in context: A127469 A103106 A272788 * A320941 A273390 A273451
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 16 2016
STATUS
approved