OFFSET
1,2
COMMENTS
The value for 'twindragon' is the same.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..2000
Angel Chang and Tianrong Zhang, On the Fractal Structure of the Boundary of Dragon Curve, Journal of Recreational Mathematics, volume 30, number 1, 1999-2000, pages 9-22. See also the pdf version.
Eric Weisstein's World of Mathematics, Dragon curve.
Wikipedia, Dragon curve.
Wikipedia, List of fractals by Hausdorff dimension.
FORMULA
Equals log_2((1+(73+6*sqrt(87))^(1/3)+(73-6*sqrt(87))^(1/3))/3).
From Kevin Ryde, Dec 06 2019: (Start)
Equals 2*log(A289265)/log(2) [Chang and Zhang, equation 9].
Equals log(A289265)/log(sqrt(2)). (End)
EXAMPLE
1.5236270862024921062776839359542166272849363834011934781386909094...
MATHEMATICA
RealDigits[Log2[(1 + (73+6*Sqrt[87])^(1/3) + (73-6*Sqrt[87])^(1/3))/3], 10, 100][[1]] (* Amiram Eldar, May 18 2021 *)
PROG
(PARI) log((1+(73+6*sqrt(87))^(1/3)+(73-6*sqrt(87))^(1/3))/3)/log(2)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, Apr 18 2016
STATUS
approved