[go: up one dir, main page]

login
A272031
Decimal expansion of the Hausdorff dimension of the Heighway-Harter dragon curve boundary.
2
1, 5, 2, 3, 6, 2, 7, 0, 8, 6, 2, 0, 2, 4, 9, 2, 1, 0, 6, 2, 7, 7, 6, 8, 3, 9, 3, 5, 9, 5, 4, 2, 1, 6, 6, 2, 7, 2, 8, 4, 9, 3, 6, 3, 8, 3, 4, 0, 1, 1, 9, 3, 4, 7, 8, 1, 3, 8, 6, 9, 0, 9, 0, 9, 4, 5, 7, 9, 2, 1, 6, 6, 2, 8, 9, 5, 8, 8, 4, 1, 0, 6, 8, 9, 2, 6, 6, 4, 2, 2, 7, 4, 6, 4, 7, 1, 3, 9, 4, 2, 8, 1, 1, 2, 4
OFFSET
1,2
COMMENTS
The value for 'twindragon' is the same.
LINKS
Angel Chang and Tianrong Zhang, On the Fractal Structure of the Boundary of Dragon Curve, Journal of Recreational Mathematics, volume 30, number 1, 1999-2000, pages 9-22. See also the pdf version.
Eric Weisstein's World of Mathematics, Dragon curve.
Wikipedia, Dragon curve.
FORMULA
Equals log_2((1+(73+6*sqrt(87))^(1/3)+(73-6*sqrt(87))^(1/3))/3).
From Kevin Ryde, Dec 06 2019: (Start)
Equals 2*log(A289265)/log(2) [Chang and Zhang, equation 9].
Equals log(A289265)/log(sqrt(2)). (End)
EXAMPLE
1.5236270862024921062776839359542166272849363834011934781386909094...
MATHEMATICA
RealDigits[Log2[(1 + (73+6*Sqrt[87])^(1/3) + (73-6*Sqrt[87])^(1/3))/3], 10, 100][[1]] (* Amiram Eldar, May 18 2021 *)
PROG
(PARI) log((1+(73+6*sqrt(87))^(1/3)+(73-6*sqrt(87))^(1/3))/3)/log(2)
CROSSREFS
Cf. A014577, A191689 (Levy dragon), A327620 (tame twin-dragon).
Sequence in context: A021195 A019673 A229780 * A090183 A063572 A205294
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, Apr 18 2016
STATUS
approved