OFFSET
0,5
COMMENTS
Length of n-th row given by A000120(n);
Maximum of n-th row given by A000523(n);
Minimum of n-th row given by A007814(n);
GCD of n-th row given by A064894(n);
Sum of n-th row given by A073642(n + 1).
n-th row begins at index A000788(n - 1) for n > 0.
The first appearance of n is at A001787(n).
a(A001787(n) + 2) = 0 for all n > 0.
a(A001787(n) + 4) = 1 for all n > 1.
Row n < 1024 lists the digits of A262557(n). - M. F. Hasler, Dec 11 2019
LINKS
Peter Kagey, Table of n, a(n) for n = 0..10000
EXAMPLE
Row n is given by the exponents in the binary expansion of n. For example, row 5 = [2, 0] because 5 = 2^2 + 2^0.
Row 0: []
Row 1: [0]
Row 2: [1]
Row 3: [1, 0]
Row 4: [2]
Row 5: [2, 0]
Row 6: [2, 1]
Row 7: [2, 1, 0]
MATHEMATICA
Map[Length[#] - Flatten[Position[#, 1]] &, IntegerDigits[Range[50], 2]] (* Paolo Xausa, Feb 13 2024 *)
PROG
(PARI) apply( A272011_row(n)=Vecrev(vecextract([0..exponent(n+!n)], n)), [0..39]) \\ For n < 2^10: row(n)=digits(A262557[n]). There are 2^k rows starting with k, they start at row 2^k. - M. F. Hasler, Dec 11 2019
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Peter Kagey, Apr 17 2016
STATUS
approved