[go: up one dir, main page]

login
A271053
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 253", based on the 5-celled von Neumann neighborhood.
1
7, -4, 40, -31, 103, -103, 207, -207, 343, -343, 511, -511, 711, -711, 943, -943, 1207, -1207, 1503, -1503, 1831, -1831, 2191, -2191, 2583, -2583, 3007, -3007, 3463, -3463, 3951, -3951, 4471, -4471, 5023, -5023, 5607, -5607, 6223, -6223, 6871, -6871, 7551
OFFSET
0,1
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Nov 22 2017: (Start)
G.f.: (7 + 3*x + 22*x^2 + 3*x^3 + 7*x^4 - 15*x^5 - 4*x^6 + 9*x^7) / ((1 - x)^2*(1 + x)^3).
a(n) = 4*n^2 + 12*n - 9 for n>2 and even.
a(n) = -4*n^2 - 4*n + 17 for n>2 and odd.
a(n) = -a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4) - a(n-5) for n>7.
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=253; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[on[[i+1]]-on[[i]], {i, 1, Length[on]-1}] (* Difference at each stage *)
CROSSREFS
Cf. A271051.
Sequence in context: A270983 A278047 A271007 * A270629 A270680 A270904
KEYWORD
sign,easy
AUTHOR
Robert Price, Mar 29 2016
STATUS
approved