[go: up one dir, main page]

login
A270388
a(n) = A048739(n-2) mod n.
0
1, 0, 0, 0, 1, 0, 0, 3, 1, 0, 8, 0, 1, 8, 0, 0, 13, 0, 8, 17, 1, 0, 0, 20, 1, 21, 8, 0, 19, 0, 0, 3, 1, 34, 8, 0, 1, 29, 8, 0, 7, 0, 8, 41, 1, 0, 0, 21, 31, 3, 8, 0, 13, 9, 8, 3, 1, 0, 20, 0, 1, 59, 0, 20, 49, 0, 8, 26, 1, 0, 0, 0, 1, 3, 8, 20, 49, 0, 48, 75, 1, 0, 56, 20, 1, 32, 24, 0, 49, 28, 8, 65, 1, 39, 0, 0, 85, 3, 68, 0
OFFSET
2,8
COMMENTS
If n is an odd prime, a(n) = 0. In other words, ((1-sqrt(2))^p + (1+sqrt(2))^p - 2)) is divisible by p where p is an odd prime.
FORMULA
a(n) = (((1-sqrt(2))^n + (1+sqrt(2))^n - 2) / 4) mod n, for n > 1.
PROG
(PARI) a048379(n) = my(w=quadgen(8)); -1/2+(3/4+1/2*w)*(1+w)^n+(3/4-1/2*w)*(1-w)^n;
a(n) = a048379(n-2) % n;
CROSSREFS
Sequence in context: A143395 A090536 A187557 * A052420 A348096 A162971
KEYWORD
nonn
AUTHOR
Altug Alkan, Mar 16 2016
STATUS
approved