[go: up one dir, main page]

login
A270305
Magic sums of 3 X 3 magic squares composed of consecutive primes.
10
4440084513, 5551770297, 15588557967, 16804701687, 17271853617, 18145113213, 18453231933, 28551366903, 57156707667, 61433605083, 71440079091, 72080670603, 80244450939, 85559974287, 104463978483, 133262909853, 147857315253, 221483397153, 221924345793, 222661558173, 229451723637, 229680831153, 240429269013, 257676075807, 267398777427, 286546347237, 299932274193
OFFSET
1,1
REFERENCES
Allan W. Johnson, Jr., Consecutive-Prime Magic Squares, Journal of Recreational Mathematics, vol. 15, 1982-83, pp. 17-18.
H. L. Nelson, A Consecutive Prime 3 x 3 Magic Square, Journal of Recreational Mathematics, vol. 20:3, 1988, p. 214.
FORMULA
a(n) = 3*A166113(n).
a(n) = Sum_{k=0..8} prime(pi(A256891(n))+k)/3, where (prime)pi = A000720, prime = A000040. A similar formula is possible using the central prime A166113(n). - M. F. Hasler, Oct 28 2018
a(n) = 3*A256891(n) + 9*A343194(n) + 3*A343195(n). - A.H.M. Smeets, Apr 08 2021
PROG
(PARI) A270305(n, p=A256891[n], N=3)=sum(i=2, N^2, p=nextprime(p+1), p)/N \\ Illustrates the second formula. Uses a precomputed array A256891, unless the smallest prime is supplied as optional 2nd argument. See also the 4x4 and 5x5 analog, A173981 and A176571, where this is useful for finding possible sets of primes, cf. A260673 and A272386. - M. F. Hasler, Oct 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved