[go: up one dir, main page]

login
A270077
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 57", based on the 5-celled von Neumann neighborhood.
1
1, 5, 10, 42, 55, 139, 168, 336, 381, 669, 738, 1162, 1227, 1871, 1964, 2756, 2909, 3949, 4118, 5398, 5583, 7195, 7432, 9340, 9625, 11821, 12226, 14746, 15259, 18163, 18728, 22060, 22689, 26485, 27102, 31422, 32055, 36979, 37791, 42979, 43912, 49776, 50801
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=57; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A270075.
Sequence in context: A270016 A271162 A269874 * A271150 A271202 A186031
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 10 2016
STATUS
approved