[go: up one dir, main page]

login
A269163
Numbers which have a finite predecessor in Wolfram's Rule 30 cellular automaton; range of A269160 sorted into ascending order.
6
0, 7, 13, 14, 25, 26, 27, 28, 49, 50, 51, 52, 53, 54, 56, 63, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 111, 112, 119, 125, 126, 193, 194, 195, 196, 197, 198, 200, 201, 202, 203, 204, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 221, 222, 223, 224, 231, 237, 238, 249, 250, 251, 252, 385, 386, 387, 388
OFFSET
0,2
COMMENTS
Numbers which have a finite predecessor in Wolfram's Rule 30 cellular automaton. The configuration of white and black cells is encoded in the binary representation (A007088) of each number.
The indexing starts from zero, because a(0) = 0 is a special case in this sequence. (Zero is the only number which is its own predecessor).
MATHEMATICA
terms = 100; Clear[f]; f[max_] := f[max] = Sort[Table[BitXor[n, BitOr[2n, 4n]], {n, 0, max}]][[1 ;; terms]]; f[terms]; f[max = 2 terms]; While[ Print[max]; f[max] != f[max/2], max = 2 max]; A269163 = f[max] (* Jean-François Alcover, Feb 23 2016 *)
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A269163 (MATCHING-POS 0 0 (lambda (n) (or (zero? n) (not (zero? (A269162 n)))))))
CROSSREFS
Complement: A269164.
Sequence in context: A120100 A308525 A104217 * A260482 A328254 A347637
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 20 2016
STATUS
approved