[go: up one dir, main page]

login
A269023
Complement of A269020: numbers not of the form ceiling(n^(1+1/n)).
3
2, 4, 8, 19, 51, 141, 392, 1079, 2957, 8072, 21987, 59825, 162695, 442342, 1202521, 3268920, 8885999, 24154826, 65659826, 178482140
OFFSET
1,1
COMMENTS
The limiting ratio is e (see comment in A059921).
EXAMPLE
The term 8 appears because A269020(5)=7 and A269020(6)=9.
MATHEMATICA
Complement[Range[1, 100000], Table[Ceiling[n^(1 + 1/n)], {n, 100000}]] (* Vaclav Kotesovec, Mar 12 2016 *)
PROG
(PARI) a269020(n) = ceil(n^(1+1/n))
for(n=1, 1e20, if(a269020(n+1)-a269020(n) > 1, print1(a269020(n)+1, ", "))) \\ Felix Fröhlich, Mar 12 2016
(Python)
from itertools import count
def A269023(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
if x==1: return n+1
z = x**x
for y in count(x, -1):
if y**(y+1) <= z:
return n+y
z //= x
return bisection(f, n, n) # Chai Wah Wu, Sep 10 2024
CROSSREFS
Sequence in context: A003081 A100133 A099598 * A173310 A320178 A128816
KEYWORD
nonn,more
AUTHOR
Bob Selcoe, Feb 18 2016
EXTENSIONS
a(18)-a(20) from Felix Fröhlich, Mar 12 2016
STATUS
approved