[go: up one dir, main page]

login
A268811
Sequence of positive integers where each is chosen to be as small as possible subject to the condition that no three terms a(j), a(j+k), a(j+2k) (for any j and k) form a geometric progression.
3
1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 2, 3, 3, 5, 5, 6, 5, 5, 6, 1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 2, 3, 3, 5, 5, 6, 5, 5, 6, 2, 3, 3, 5, 5, 6, 5, 5, 6, 6, 7, 7, 6, 7, 7, 8, 8, 10, 6, 7, 7, 6, 7, 7, 8, 8, 10, 1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 2, 3, 3, 5, 5, 6, 5, 5, 6, 1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 2
OFFSET
1,3
COMMENTS
Apparently: all terms belong to A000452, and for any k > 0, the value A000452(k) first appears at index A265316(k+1). - Rémy Sigrist, May 13 2021
LINKS
PROG
(Python)
A268811_list = []
for n in range(1000):
....i, j, b = 1, 1, set()
....while n-2*i >= 0:
........b.add(A268811_list[n-i]**2/A268811_list[n-2*i])
........i += 1
........while j in b:
............b.remove(j)
............j += 1
....A268811_list.append(j)
(C) See Links section.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved