[go: up one dir, main page]

login
A268386
a(n) = A193231(A268387(n)).
4
0, 1, 1, 3, 1, 0, 1, 2, 3, 0, 1, 2, 1, 0, 0, 5, 1, 2, 1, 2, 0, 0, 1, 3, 3, 0, 2, 2, 1, 1, 1, 4, 0, 0, 0, 0, 1, 0, 0, 3, 1, 1, 1, 2, 2, 0, 1, 4, 3, 2, 0, 2, 1, 3, 0, 3, 0, 0, 1, 3, 1, 0, 2, 6, 0, 1, 1, 2, 0, 1, 1, 1, 1, 0, 2, 2, 0, 1, 1, 4, 5, 0, 1, 3, 0, 0, 0, 3, 1, 3, 0, 2, 0, 0, 0, 5, 1, 2, 2, 0, 1, 1, 1, 3, 1, 0, 1, 1, 1, 1, 0, 4, 1, 1, 0, 2, 2, 0, 0, 2
OFFSET
1,4
LINKS
FORMULA
The following two formulas are equivalent because A193231 distributes over bitwise XOR (A003987):
a(n) = A193231(A268387(n)) and
a(n) = A268387(A268385(n)).
a(2^k) = A193231(k). - Peter Munn, May 07 2020
From Peter Munn, Jun 02 2020: (Start)
Alternative definition, for n, k >= 1, where XOR denotes A003987:
a(prime(n)) = 1, where prime(n) = A000040(n);
a(n^2) = a(n) XOR (2 * a(n)) = A048720(a(n), 3);
a(A059897(n, k)) = a(n) XOR a(k).
(End)
MATHEMATICA
f[n_] := Which[0 <= # <= 1, #, EvenQ@ #, BitXor[2 #, #] &[f[#/2]], True, BitXor[#, 2 # + 1] &[f[(# - 1)/2]]] &@ Abs@ n; {0}~Join~Table[f[BitXor @@ Map[Last, FactorInteger@ n]], {n, 2, 120}] (* Michael De Vlieger, Feb 12 2016, after Robert G. Wilson v at A048724 and A065621 *)
PROG
(Scheme) (define (A268386 n) (A193231 (A268387 n)))
(PARI)
a268387(n) = {my(f = factor(n), b = 0); for (k=1, #f~, b = bitxor(b, f[k, 2]); ); b; }
a193231(n) = {my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2)};
a(n) = a193231(a268387(n)); \\ Michel Marcus, May 09 2020
CROSSREFS
A003987, A048720, A059897, A193231, A268385, A268387 are used in definitions of this sequence.
Cf. A000028 (indices of odd numbers), A000379 (indices of even numbers), A268390 (indices of zeros).
Sequence in context: A291624 A291635 A308243 * A122779 A120323 A320476
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 10 2016
STATUS
approved