[go: up one dir, main page]

login
A266779
Molien series for invariants of finite Coxeter group A_10.
3
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 20, 23, 32, 38, 50, 59, 77, 90, 115, 135, 168, 197, 243, 283, 344, 401, 481, 558, 665, 767, 906, 1043, 1221, 1401, 1631, 1862, 2155, 2454, 2823, 3203, 3668, 4147, 4727, 5330, 6047, 6798, 7685, 8612, 9700, 10843, 12168, 13566, 15178, 16877, 18825, 20884, 23226, 25707, 28517, 31489, 34842, 38396
OFFSET
0,5
COMMENTS
The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1 - x^i).
Note that this is the root system A_k, not the alternating group Alt_k.
REFERENCES
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, 2, 3, 3, 3, 2, 1, 0, -2, -3, -4, -4, -5, -3, -1, 1, 3, 4, 5, 5, 4, 3, 1, -1, -3, -5, -4, -4, -3, -2, 0, 1, 2, 3, 3, 3, 2, 0, -1, -1, -1, -1, -1, -1, -1, 0, 0, 1, 1, 1, 0, -1).
FORMULA
G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)*(1-t^9)*(1-t^10)*(1-t^11)).
MAPLE
seq(coeff(series(1/mul(1-x^j, j=2..11), x, n+1), x, n), n = 0..70); # G. C. Greubel, Feb 03 2020
MATHEMATICA
CoefficientList[Series[1/Product[1-x^j, {j, 2, 11}], {x, 0, 70}], x] (* G. C. Greubel, Feb 03 2020 *)
PROG
(PARI) Vec( 1/prod(j=2, 11, 1-x^j) +O('x^70)) \\ G. C. Greubel, Feb 03 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^j: j in [2..11]]) )); // G. C. Greubel, Feb 03 2020
(Sage)
def A266779_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/product(1-x^j for j in (2..11))) ).list()
A266779_list(70) # G. C. Greubel, Feb 03 2020
CROSSREFS
Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.
Sequence in context: A097851 A266778 A107235 * A035949 A347445 A240014
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 11 2016
STATUS
approved