[go: up one dir, main page]

login
A266417
a(1) = 1; for n > 1, if A192490(2n+1) = 1 [when 2n+1 is Ludic number] a(n) = 1 + 2*a(A266350(n)-1), otherwise a(n) = 2*a(n-A266350(n)).
4
1, 3, 7, 2, 15, 5, 6, 31, 14, 4, 11, 13, 30, 63, 10, 12, 62, 29, 28, 9, 23, 8, 27, 22, 26, 61, 60, 126, 20, 127, 24, 124, 21, 58, 25, 56, 18, 125, 46, 16, 59, 54, 44, 57, 19, 52, 122, 47, 120, 252, 40, 254, 17, 48, 248, 42, 55, 116, 45, 53, 50, 112, 123, 36, 121, 250, 92, 32, 118, 108, 253, 88, 114, 41, 38
OFFSET
1,2
FORMULA
a(1) = 1; for n > 1, if A192490(2*n + 1) = 1 [when 2n+1 is Ludic number] a(n) = 1 + 2*a(A266350(n)-1), otherwise a(n) = 2*a(n-A266350(n)).
As a composition of related permutations:
a(n) = A237427(A266637(n)).
PROG
(Scheme, with memoization-macro definec)
(definec (A266417 n) (cond ((<= n 1) n) ((zero? (A192490 (+ n n 1))) (* 2 (A266417 (- n (A266350 n))))) (else (+ 1 (* 2 (A266417 (+ -1 (A266350 n))))))))
CROSSREFS
Inverse: A266418.
Similar or related permutations: A237427, A266637.
Sequence in context: A222070 A163917 A377558 * A260433 A243343 A255565
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 28 2016
STATUS
approved