[go: up one dir, main page]

login
A266163
Primes prime(k) such that (prime(k)*prime(k+1)+1)/2 is prime.
1
467, 2179, 2777, 4877, 6151, 6173, 6871, 7907, 7937, 8329, 9791, 11261, 11287, 12119, 12227, 12941, 13009, 14657, 14831, 15061, 15607, 16127, 16193, 16453, 16787, 16831, 17989, 18701, 18803, 18947, 19507, 20483, 20521, 20627, 22291, 22397, 22409, 22877, 23497
OFFSET
1,1
COMMENTS
22397 and 22409 are first consecutive primes in this sequence. - Altug Alkan, Dec 22 2015
The next consecutive primes in this sequence are 134093 and 134129, 405541 and 405553, 432073 and 432097, 480803 and 480827, 586213 and 586237, ... - Harvey P. Dale, Dec 25 2015
LINKS
MAPLE
lastp:= 3:
count:= 0:
while count < 100 do
p:= nextprime(lastp);
if isprime((lastp*p+1)/2) then
count:= count+1;
A[count]:= lastp;
fi;
lastp:= p;
od:
seq(A[i], i=1..100);
MATHEMATICA
Prime@ Select[Range@ 2620, PrimeQ[(Prime@ # Prime[# + 1] + 1)/2] &] (* Michael De Vlieger, Dec 22 2015 *)
Transpose[Select[Partition[Prime[Range[50000]], 2, 1], PrimeQ[ (Times@@#+1)/2]&]] [[1]] (* Harvey P. Dale, Dec 25 2015 *)
PROG
(PARI) lista(nn) = {forprime(p=3, nn, if(ispseudoprime((p*nextprime(p+1)+1)/2), print1(p, ", "))); } \\ Altug Alkan, Dec 22 2015
(Magma) [p: p in PrimesInInterval(3, 3*10^4) | IsPrime((p*NextPrime(p+1)+1) div 2)]; // Vincenzo Librandi, Dec 23 2015
CROSSREFS
Cf. A023524.
Sequence in context: A036339 A036340 A059395 * A221238 A114135 A043364
KEYWORD
nonn
AUTHOR
Robert Israel, Dec 22 2015
STATUS
approved