# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a266163 Showing 1-1 of 1 %I A266163 #19 Sep 08 2022 08:46:15 %S A266163 467,2179,2777,4877,6151,6173,6871,7907,7937,8329,9791,11261,11287, %T A266163 12119,12227,12941,13009,14657,14831,15061,15607,16127,16193,16453, %U A266163 16787,16831,17989,18701,18803,18947,19507,20483,20521,20627,22291,22397,22409,22877,23497 %N A266163 Primes prime(k) such that (prime(k)*prime(k+1)+1)/2 is prime. %C A266163 22397 and 22409 are first consecutive primes in this sequence. - _Altug Alkan_, Dec 22 2015 %C A266163 The next consecutive primes in this sequence are 134093 and 134129, 405541 and 405553, 432073 and 432097, 480803 and 480827, 586213 and 586237, ... - _Harvey P. Dale_, Dec 25 2015 %H A266163 Robert Israel, Table of n, a(n) for n = 1..10000 %p A266163 lastp:= 3: %p A266163 count:= 0: %p A266163 while count < 100 do %p A266163 p:= nextprime(lastp); %p A266163 if isprime((lastp*p+1)/2) then %p A266163 count:= count+1; %p A266163 A[count]:= lastp; %p A266163 fi; %p A266163 lastp:= p; %p A266163 od: %p A266163 seq(A[i],i=1..100); %t A266163 Prime@ Select[Range@ 2620, PrimeQ[(Prime@ # Prime[# + 1] + 1)/2] &] (* _Michael De Vlieger_, Dec 22 2015 *) %t A266163 Transpose[Select[Partition[Prime[Range[50000]],2,1],PrimeQ[ (Times@@#+1)/2]&]] [[1]] (* _Harvey P. Dale_, Dec 25 2015 *) %o A266163 (PARI) lista(nn) = {forprime(p=3, nn, if(ispseudoprime((p*nextprime(p+1)+1)/2), print1(p, ", ")));} \\ _Altug Alkan_, Dec 22 2015 %o A266163 (Magma) [p: p in PrimesInInterval(3,3*10^4) | IsPrime((p*NextPrime(p+1)+1) div 2)]; // _Vincenzo Librandi_, Dec 23 2015 %Y A266163 Cf. A023524. %K A266163 nonn %O A266163 1,1 %A A266163 _Robert Israel_, Dec 22 2015 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE